情报科学 ›› 2019, Vol. 37 ›› Issue (2): 19-24.

• 论文 • 上一篇    下一篇

基于三层维度的文献个性化推荐模型研究

  

  • 出版日期:2019-02-05

  • Online:2019-02-05

摘要: 【目的/意义】大数据情报分析和知识服务时代,如何快速高效地从海量文献中获取情报并实现精准的文献 个性化推荐,是文献推荐个性化服务亟待解决的问题。【方法/过程】对文献个性化推荐模型进行研究,通过专家权 重维、用户维以及情境感知维三个维度的协同,识别用户的兴趣点。推荐模型使用层次分析法和熵权法量化专家 意见;使用潜在狄利克雷分布和KL散度计算量化用户相似度;通过用户社会标注行为、搜索行为、浏览行为得到用 户情感倾向,并引入时间因子量化用户情感;最后引入“最大频度值”确定各个维度的推荐指数,加权计算得到文献 综合推荐指数。【结果/结论】以高校图书馆为实验平台,对本文提出文献个性化推荐方法进行验证。实验结果表 明,与传统的基于内容的推荐方法、协同过滤推荐方法以及混合的推荐方法相比,基于三层维度的文献个性化推荐 方法在准确率与召回率上都取得了更好的性能。