情报科学 ›› 2018, Vol. 36 ›› Issue (9): 118-122.

• 论文 • 上一篇    下一篇

基于潜在因子模型的时间序列语义信息挖掘及匹配方法研究

  

  • 出版日期:2018-09-05

  • Online:2018-09-05

摘要: 【目的/意义】当前全球信息化时代下信息过载问题日趋严峻,在深度挖掘信息的基础上,结合用户行为特 征进行智能匹配显得尤为重要。【方法/过程】本文在基于潜在因子模型的个性化推荐算法的基础上,构建了结合时 间序列的语义信息挖掘及匹配模型。通过引入用户历史行为的时间序列语义信息,提高已有模型预测用户偏好的 准确性,结合因子分解机的思想实现对扩展模型的构建,并通过 movielens数据集对该方法的有效性进行验证。【结 果/结论】实验结果表明,新模型能够有效提高已有推荐模型预测用户偏好的准确性,从而实现了良好的数据挖掘 及匹配效果。