情报科学 ›› 2024, Vol. 42 ›› Issue (9): 135-141.

• 业务研究 • 上一篇    下一篇

基于区块链和混合表征学习的专利信息安全辨识研究

  

  • 出版日期:2024-09-01 发布日期:2024-11-06

  • Online:2024-09-01 Published:2024-11-06

摘要: 【目的/意义】通过进行专利信息安全辨识研究,可以帮助确保专利信息的保密性,防止盗窃和篡改,从而保 护创新者的权益。为了充分保障专利购买者权益并为专利与知识产权保护工作提供有力支持,提出基于区块链和 混合表征学习的专利信息安全辨识方法。【方法/过程】采用区块链技术搭建专利信息溯源模型,结合信息溯源结果 搭建基于混合表征学习的专利信息安全辨识框架。在该框架下通过卷积神经网络、图卷积神经网络表征专利信息 文本以及结构安全特征并形成特征向量。将特征向量作为全连接神经网络输入,获取专利信息安全预测结果。若 专利文件存在安全隐患,通过溯源条码与溯源查询区块链条进行连接查询专利历史交易信息,通过匹配数字签名 确认专利文件是否被篡改,并以溯源记录为可靠依据实现专利信息安全辨识。【结果/结论】结果发现,该方法在专 利信息安全辨识工作中的实用性较强,可显著提升专利信息安全辨识效果。【创新/局限】将区块链和混合表征学习 应用到专利信息安全辨识中,能够在保证信息安全性的同时,增加辨识精度。混合表征学习方法通常需要更大的 计算资源和存储空间,特别是对于复杂的专利信息辨识任务来说,这会导致实施过程中的成本增加,从而限制了该 方法在实际应用中的规模和效率。

Abstract: 【Purpose/significance】By conducting research on patent information security identification, it can help ensure the confi⁃ dentiality of patent information, prevent theft and tampering, and thus protect the rights of innovators. In order to fully protect the rights and interests of patent buyers and provide strong support for patent and intellectual property protection, a patent information se⁃ curity identification method based on blockchain and hybrid representation learning is proposed.【Method/process】We use block⁃ chain technology to build a patent information traceability model, and combine the results of information traceability to build a patent information security identification framework based on hybrid representation learning. Under this framework, convolutional neural net⁃ works and graph convolutional neural networks are used to represent patent information texts and structural security features, forming feature vectors. Using feature vectors as inputs to a fully connected neural network to obtain patent information security prediction re⁃ sults. If there are security risks in patent documents, connect the traceability barcode and traceability query blockchain to query patent historical transaction information, confirm whether the patent documents have been tampered with by matching digital signatures, and use traceability records as a reliable basis to achieve patent information security identification.【Result/conclusion】It was found that this method has strong practicality in patent information security identification work and can significantly improve the effectiveness of patent information security identification.【Innovation/limitation】Applying blockchain and hybrid representation learning to patent in⁃ formation security identification can increase identification accuracy while ensuring information security. Hybrid representation learn⁃ ing methods typically require larger computational resources and storage space, especially for complex patent information identifica⁃ tion tasks, which can lead to increased costs during implementation, thereby limiting the scale and efficiency of the method in practical applications.