情报科学 ›› 2024, Vol. 42 ›› Issue (1): 68-75.

• 理论研究 • 上一篇    下一篇

面向预测的科技领域实体增长时间序列模式分类研究
——以人工智能领域为例

  

  • 出版日期:2024-01-05 发布日期:2024-06-03

  • Online:2024-01-05 Published:2024-06-03

摘要:

【目的/意义】对科技领域实体增长时间序列模式进行分类,是有效开展知识增长预测的前提。本文提出并
验证了科技领域实体增长时间序列可预测性分类方案。【方法/过程】首先,从科技文献摘要中抽取问题、方法两类
实体,并标注可拟合、有趋势、无规律三类实体时间序列样本;其次,利用动态时间规整算法计算实体时间序列形状
相似度,利用曲线拟合和加权局部回归来提取时间序列特征;最后,比较了基于形状相似度和基于特征的两大类时
间序列分类算法的效果。【结果/结论】通过人工智能领域实验,发现基于曲线拟合和加权局部回归算法提取的特征
能够有效开展实体增长时间序列模式分类,
F
1值可达0.91;将分类结果应用在时间序列趋势预测,能够有效降低实
体增长时间序列预测的误差。【创新/局限】本文将时间序列挖掘应用到实体增长预测中,为科技预测提供了新的解
决思路。未来需要更加关注时间序列局部特征,进而对实体变化过程和原因进行深入思考。

Abstract:

【Purpose/significance】 Time series pattern classification of entities in science and technology is a premise for effective
knowledge growth prediction. In this paper, a predictability classification scheme of entity time series in science and technology is pro⁃
posed and verified.【Method/process】 First, two kinds of entities of problem and method are extracted from the abstracts of scientific
and technical literature, and the time series samples of fitting, trending and irregularity entities are marked. Second, dynamic time
warping is used to calculate the shape similarity of time series, curve fitting and locally weighted regression are used to extract features
of time series. Finally, the effects of two methods of time series classification based on shape similarity and features are compared.
【Result/conclusion】 Through the experiment in the field of artificial intelligence, it is found that the features extracted by curve fitting
and weighted local regression can effectively carry out entity time series pattern classification with F1 value up to 0.91. Applying clas⁃
sification to the trend prediction of time series can reduce the error of entity time series prediction.【Innovation/limitation】 Applying
time series mining to entity growth prediction provides new solution for science and technology forecasting. In the future, pay more at⁃
tention to the local features of time series, and then think deeply about the process and causes of entity changes.