情报科学 ›› 2023, Vol. 41 ›› Issue (8): 89-94.

• 理论研究 • 上一篇    下一篇

大数据时代医学数据挖掘分析平台构建

  

  • 出版日期:2023-08-01 发布日期:2023-09-19

  • Online:2023-08-01 Published:2023-09-19

摘要: 【目的/意义】伴随大数据环境这个新型概念的兴起,大数据技术与社会各领域紧密结合起来,“大数据”渗 透到社会各个行业中,尤其是在医学领域,无论是医学科研、科室服务、寻病问诊,还是医学数字资源开发、利用都 发生了巨大的变化。本文旨在建立统一高效、互联互通、实用共享的医疗卫生体系,从而能够更好地为疾病诊疗带 来保障。【方法/过程】通过对循证医学数据挖掘研究现状的分析,本文构建了大数据时代循证医学的医学数据挖掘 分析平台,并对数据挖掘分析平台的建设意义、分析方法、系统架构、关键技术和效果评估展开了分析。【结果/结 论】设计了数据挖掘分析平台系统架构中的五个模块,包括数据采集模块、数据预处理模块、数据仓库模块、数据挖 掘模块和可视化应用模块。【创新/局限】本文通过医学数据挖掘分析平台的构建,实现了对医学数据的数据挖掘, 提供了对药物应用分析、疾病的诊疗分析和医疗决策支持系统三方面的分析功能,能够帮助医生用户提高诊疗准 确率,帮助医疗管理用户提高管理能力,也实现了对循证医学数据使用的目的。

Abstract: 【 Purpose/significance】With the rise of the new concept of big data environment, big data technology has been closely inte⁃ grated with various fields of society. "Big data" has penetrated into various industries in society, especially in the medical field. Whether it is medical research, department services, disease seeking and consultation, or the development and utilization of medical digital resources, significant changes have taken place. This article aims to establish a unified, efficient, interconnected, and practical healthcare system, in order to better provide protection for disease diagnosis and treatment.【 Method/process】By analyzing the current research status of evidence-based medicine data mining, this article constructs a medical data mining analysis platform for evidencebased medicine in the big data era, and analyzes the significance, analysis methods, system architecture, key technologies, and effec⁃ tiveness evaluation of the data mining analysis platform.【 Result/conclusion】Five modules in the system architecture of the data min⁃ ing analysis platform were designed, including data collection module, data preprocessing module, data warehouse module, data min⁃ ing module, and visualization application module.【 Innovation/limitations】This article realizes the data mining of medical data through the construction of a medical data mining analysis platform, providing analysis functions in three aspects: drug application analysis, disease diagnosis and treatment analysis, and medical decision support system. It can help doctor users improve diagnosis and treat⁃ ment accuracy, help medical management users improve management capabilities, and also achieve the purpose of using evidencebased medical data.