情报科学 ›› 2023, Vol. 41 ›› Issue (7): 100-105.

• 业务研究 • 上一篇    下一篇

基于大数据技术的用户个人信息隐私数据保护研究

  

  • 出版日期:2023-08-01 发布日期:2023-08-22

  • Online:2023-08-01 Published:2023-08-22

摘要:

【目的/意义】个人信息隐私数据存在信息保护难度大、传输效率低的问题,为保证用户个人信息隐私数据
的安全,提出基于大数据技术的用户个人信息隐私数据保护方法。【方法/过程】根据用户个人信息的原始数据,检测
信息数据的敏感性,获取数据的隐私状态,构建用户个人信息隐私数据模型。描述用户个人信息的隐私数据之后,
初始化用户个人信息隐私数据聚类中心,由基于大数据聚类技术的隐私数据k-means聚类方案,提取用于用户个人
信息保护的隐私数据。通过基于动态密钥选择的隐私信息双重加密方法,加密所提取隐私数据,保护用户个人信息
的隐私安全。【结果/结论】实验结果证明:该方法应用下,对个人基本资料隐私数据、信用记录隐私数据的聚类结果
与实际数据分类情况完全一致,所提方法在征信体系用户个人信息隐私数据的提取与加密过程中,用户个人信息隐
私数据原始信息全部隐藏,且隐私数据的信息损失值极小,个人信息安全性得以保证。【创新/局限】本文研究了基于
大数据技术的征信体系用户个人信息保护方法,该方法通过加密的形式可以有效保护个人信息隐私数据安全。

Abstract:

【Purpose/significance】 Personal information privacy data has the problems of great difficulty in information protection and
low transmission efficiency. In order to ensure the security of users' personal information privacy data, a method for protecting users'personal information privacy data based on big data technology is proposed.【Method/process】 According to the original data of the us⁃ers' personal information, the sensitivity of the information data is detected, the privacy state of the data is obtained, and the users' per⁃sonal information privacy data model is built. After describing the privacy data of the user's personal information, initialize the users' personal information privacy data clustering center, and extract the privacy data for the protection of the user's personal information from the privacy data k-means clustering scheme based on big data clustering technology. By using the double encryption method of privacy information based on dynamic key selection, the extracted privacy data is encrypted to protect the privacy and security of us⁃ers' personal information.【Result/conclusion】 The experimental results show that: under the application of this method, the clustering results of personal basic data privacy data and credit record privacy data are completely consistent with the actual data classification.In the process of extracting and encrypting the users' personal information privacy data in the credit reporting system, the original in⁃formation of the user's personal information privacy data is hidden, and the information loss value of the privacy data is minimal, so the personal information security can be guaranteed.【Innovation/limitation】 This paper studies the protection method of users' personal information in the credit reporting system based on big data technology, which can effectively protect the privacy and data security of personal information in the form of encryption.