摘要: 【目的/意义】对南海历史事件中具有标识意义的事件要素进行提炼与梳理,是构建南海大事记、讲好中国
南海故事的基础。【方法/过程】首先总结南海历史事件的特殊性,进而论述南海叙事的具体维度,在此基础上定义
事件要素划分标准实现对南海历史事件的规范建模,接着提出了一种结合规则与深度学习的事件要素自动抽取方
法,最后以南海相关学术论文为对象,通过实证研究验证了该方法的有效性及效率。【结果/结论】研究表明,BERT+
BiLSTM+CRF模型表现优于其它对比模型,宏观F1值达到87.73%;通过规则约束优化BERT+BiLSTM+CRF模型
后,宏观F1值达到88.76%,取得了不错的效果,在面向泛化南海历史事件文本时能快速、有效地抽取出各类型事件
要素实例。【创新/局限】结合南海历史事件的特征,探索了面向多维度南海叙事的事件要素自动抽取方法,实现学
术论文中各类型事件要素的抽取,后续有待在更多文献资料类型上进行泛化实验。