摘要: 【目的/意义】提出基于Stacking集成学习的问答信息采纳行为识别策略,促进在线健康社区问答的精准化
推送、助推数字化医疗服务高质量发展。【方法/过程】构建以集成学习方法和非集成学习方法为基学习器、以逻辑
回归算法(LR)为元学习器的Stacking集成学习模型,比较单预测模型、同类预测模型组合、不同类预测模型组合的
Stacking集成学习模型预测精度,选取“寻医问药”平台的慢性病问答构建数据集验证模型的优越性,并选取“快速
问医生有问必答120”平台数据验证模型的可移植性。【结果/结论】Stacking集成模型相比于单预测模型能够更精准
识别被采纳问答信息,模型具有较强的泛化性,可以适用于不同的在线健康社区。【创新/局限】本文基于Stacking集
成思想构建两阶段预测模型,并借助机器学习构建最佳预测模型组合,显著提高在线健康社区问答信息采纳识别
精度,但伴随问答信息积累,在线健康社区问答模式不断发展变化,考虑结合历史数据和每日更新数据的动态预测
方法是未来研究工作重点。