情报科学 ›› 2022, Vol. 40 ›› Issue (10): 107-113.

• 业务研究 • 上一篇    下一篇

基于主成分的BP人工神经网络期刊评价——以人文社科期刊为例

  

  • 出版日期:2022-10-01 发布日期:2022-10-01

  • Online:2022-10-01 Published:2022-10-01

摘要: 【目的/意义】期刊评价的方法繁多且复杂,无法分辨其中的好坏,对于方法的效果也是难以锚定,使得期刊
评价存在一定的模糊性和不确定性。【方法
/过程】本文在主成分分析方法的基础上,提出了一种新的期刊评价方法
——主成分
-BP人工神经网络法,以《中国学术期刊影响因子年报(人文社会科学)》(2021年)的585种综合性人文
社科期刊作为评价对象,将评价结果同权威期刊评价结果进行对比,再对评价方法进行分析。【结果
/结论】研究结
果表明:主成分
-BP人工神经网络方法同部分传统方法相比结果更加精准;主成分-BP人工神经网络方法对评价
对象要求较高;为其他领域期刊评价以及评价方法提供一定的借鉴思路。【创新
/局限】本文仅以人文社科期刊为
例,范围有一定的局限性,今后应进一步扩大研究主体范围并尝试将这种方法用于其它领域的评价。

Abstract: Purpose/significanceThere are many and complex methods for journal evaluation, and it is impossible to distinguish be‐tween good and bad, and it is difficult to anchor the results of the methods, which makes journal evaluation ambiguous and inaccurate.Method/processIn this paper, based on the principal component analysis method, a new journal evaluation method, the principal component-BP artificial neural network method, is proposed to evaluate 585 comprehensive humanities and social science journals in the Annual Report on Impact Factor of Chinese Academic Journals (Humanities and Social Sciences) (2021), and the evaluation re‐sults are compared with authoritative journal The evaluation results are compared with those of authoritative journals, and then the
evaluation method is analyzed.
Result/conclusionThe research results show that: the principal component-BP artificial neural net‐work method is more accurate than some traditional methods; the principal component-BP artificial neural network method has higher requirements for evaluation objects; meanwhile, To provide some ideas for other fields of journal evaluation as well as evaluation meth‐ods.Innovation/limitationThis paper only takes humanities and social science journals as an example, and the scope is limited. In the future, we should further expand the scope of research subjects and try to apply this method to evaluation in other fields.