摘要: 【目的/意义】为了协助商家和平台获取移动商务在线评论中的用户需求,解决在线评论过载导致用户需求
提取困难等问题。【方法/过程】本文首先获取原始在线评论数据集进行文本预处理和清洗;然后,深入语义层面基
于改进后的 Canopy-Kmeans算法实现用户需求聚合;最后,以聚合结果为层级指标设计 Kano问卷,用重要性判别
方法和用户满意度指数优化用户需求分类标准,实现用户需求的高效聚合和精准挖掘。【结果/结论】通过实验结果
对比分析发现与基于语义的传统聚类方法相比,本文设计的移动商务用户需求聚合与挖掘方法的聚类结果更清晰
合理,能够获取更精准和细化的用户需求。【创新/局限】借助Word2vec模型从语义的视角分析用户需求,提出基于
Canopy-Kmeans算法的用户需求聚合挖掘模型,但选取的研究对象和数据规模较为有限,下一步将扩大在线商品
评论的研究范围及实验数据规模。