情报科学 ›› 2022, Vol. 40 ›› Issue (6): 98-107.

• 业务研究 • 上一篇    下一篇

突发公共卫生事件情境下在线健康社区用户画像与分群研究 

  

  • 出版日期:2022-06-01 发布日期:2022-06-12

  • Online:2022-06-01 Published:2022-06-12

摘要: 【 目的/意义】在突发公共卫生事件情境下面向在线健康社区用户画像与分群,有助于提升社区服务质量,为
拓宽互联网疫情风险感知渠道作出贡献。【方法
/过程】以“COVID-19”为例,结合社区数据特点从用户基本特征、
用户兴趣主题、情感倾向、用户问诊需求和用户交互网络角色五个角度出发构建画像标签并利用
DBSCAN聚类实
现画像,根据画像结果呈现用户概貌;利用
AP算法在画像基础上实现用户分群,通过社会网络分析找到最具疫情
风险发现价值的用户类群。【结果
/结论】实例分析表明,本文所构建的模型能够有效生成在线健康社区用户画像,
画像可以对社区用户进行概括、映射用户原貌;分群结果呈现出
5类社区用户群:患者、疑似患者、医师、奉献者和社
区管理员;社会网络分析表明最具疫情风险发现价值的用户群体为疑似患者和奉献者。【创新
/局限】实例分析数据
量尚达不到“大数据”标准,画像构建粒度仍有继续提升的空间。

Abstract: Purpose/significanceIn the scene of epidemic situation,portrait and grouping users in online health communities will help to raise the quality of community services and contribute to broadening the channels of Internet epidemic risk perception. Method/pro⁃cessTake "COVID-19" as an example,combine the characteristics of community data to construct portrait labels from five perspec⁃tives:basic user characteristics,user interest topics,emotional tendencies,user consultation needs,and user interaction network roles,and use DBSCAN clustering to achieve portraits. The portrait result presents the user profile; the AP algorithm is used to achieve user grouping based on the portrait,and the user group with the most epidemic risk discovery value is found through social network analysis.Result/conclusionThe case study shows that the model can effectively generate user portraits of OHC,which can summarize and map users' original appearance.The results showed that there were five groups of community users:patients,suspected patients,doctors, devotees and community administrators.Social network analysis showed that suspected patients and devotees were the most valuable user groups for epidemic risk detection. Innovation/limitationThe amount of instance analysis data is not up to the standard of severe "big data",and the granularity of image construction still has room for further improvement.