摘要: 【目的/意义】从海量论文元数据中抽取算法术语并构建它们之间的创新演化关系,有利于对算法的有效管
理和运用,以帮助科研工作者提升研究效率、采纳前沿成果。【方法/过程】首先,以GAN算法论文摘要为语料,通过
人工标注与规则抽取相结合的方式进行算法术语标注,并利用BERT-BiLSTM-CRF模型实现算法术语的自动抽
取。然后,将建立的模型应用于LDA算法论文的被引文献元数据中抽取算法术语,依据规则判断和引文关系,从被
引内容中抽取LDA算法的创新演化路径并构建。【结果/结论】以GAN论文为实例的算法术语实验中,精确率、召回
率与F1分数分别达到了0.81、0.63与0.71,并应用关系抽取方法成功构建了LDA算法的创新演化路径,该方法可以
有效推动算法进化网络构建和算法检索与追踪等方面的工作,丰富创新扩散理论的相关研究。【创新/局限】拓展了
命名实体识别技术的应用领域,为计算机算法管理提供了良好的思路。后续可优化创新演化路径的构建方法。