情报科学 ›› 2022, Vol. 40 ›› Issue (3): 82-90.

• 业务研究 • 上一篇    下一篇

多维属性融合视角下的在线健康社区关键用户识别研究

  

  • 出版日期:2022-03-01 发布日期:2022-03-08

  • Online:2022-03-01 Published:2022-03-08

摘要: 【目的/意义】在线健康社区已成为公众获取医疗信息和服务的重要形式。识别在线健康社区关键用户及
其特征,为提升健康社区服务质量和效率提供理论依据。【方法/过程】基于信息行为学理论构建了包括交互行为属
性、信息质量属性、情感倾向属性的多维分析框架,利用AttriRank算法和网络抗毁性评估方法识别在线健康社区关
键用户。【结果/结论】在胆系癌症疾病QQ群中识别出15个关键用户。他们不仅具有高活跃性和高互惠度的交互
行为特征,还具备多样性水平高且结构均衡的信息质量特征,且多数持有正向情绪倾向。“行为+内容+情绪”的分析
框架和考虑属性的用户排序算法能准确识别在线健康社区关键用户,为在线健康社区的持续运营供了科学的决策
支持。【创新/局限】构建多维属性分析框架进行在线健康社区关键用户识别,丰富了在线健康社区关键用户识别的
理论体系。

Abstract: 【Purpose/significance】Online health community has become an important form for the public to obtain medical information
and services.This paper explores the identification of key users and their characteristics in online health community,with a view to pro‐
vide theoretical basis for improving the quality and efficiency of health community service【. Method/process】Based on the information behavior theory.a multi-dimensional analysis framework was constructed.including interactive behavior attributes,information quality attributes and emotional tendency attributes.AttriRank algorithm and network invulnerability evaluation method were used to identify key users of online health community【. Result/conclusion】The results showed that 15 key users were identified in the QQ group of bili‐ary cancer diseases and they not only have the characteristics of high activity and reciprocity.but also have the characteristics of highdiversity and balanced information quality.and most of them have positive emotional tendencies.The analysis framework of "behavior +content + emotion" and the user ranking algorithm considering attributes can accurately identify the key users of the online health com‐munity.which provides scientific decision support for the sustainable operation of online health community.【Innovation/limitation】Build a multi-dimensional attribute analysis framework for online health community key user identification,which enriches the theoret‐ical system of online health community key user identification。