摘要:
【目的/意义】研究从用户节点和网络全局两个视角出发,基于用户相似度与信任度对虚拟学术社区中学者进行推荐,提高学者推荐的质量。【方法/过程】首先,利用LDA主题模型挖掘学者发表的博文主题,计算博文相似度;通过学者共同好友比例计算好友相似度;然后将博文相似度和好友相似度融合计算用户相似度;最后,融合用户相似度和信任度进行学者推荐。【结果/结论】提出虚拟学术社区中基于用户相似度与信任度的学者推荐方法,综合利用用户节点和网络全局信息,为虚拟学术社区用户进行学者推荐。【创新/局限】从用户节点和网络全局两个角度进行学者信息融合,有效提高了虚拟学术社区中学者推荐的质量。局限在于本文主要考虑的是学者在网络全局中的信任度,用户节点间的交互信任关系还有待进一步研究。