摘要: 【目的/意义】针对图书馆用户群体聚类分群不稳定且错误率较高的问题,提出基于马尔可夫模型的图书馆
用户聚类分群方法,提升图书馆用户聚类分群精准度。【方法/过程】采用一阶马尔可夫混合模型构建用户动作序列
模型,通过模型产生用户行为聚类,体现用户动作的动态性,采用自适应自然梯度算法,依据用户行为分离状态自
适应调整自身步长,优化模型参数学习中模型自动选择问题,实现最佳图书馆用户聚类分群。【结果/结论】通过实
验结果能够证明,实际聚类数量小于L值时,提出方法能够实现参数学习过程中模型的自动选择。提出方法的分群
数量最多,能够划分出最大的取值区间,聚类错误率最低为0.22%,聚类性能比较稳定,分群结果更加精准,达到了
设计的预期。【创新/局限】采用一阶马尔可夫混合模型实现了图书馆用户聚类分群。后续将进一步研究可考虑用
户序列间关联的高阶马尔可夫分量模型,以提高分群算法的准确性和稳定性。