情报科学 ›› 2021, Vol. 39 ›› Issue (8): 103-111.

• 业务研究 • 上一篇    下一篇

基于兴趣转移的微博用户动态画像生成 

  

  • 出版日期:2021-08-01 发布日期:2021-08-05

  • Online:2021-08-01 Published:2021-08-05

摘要: 【目的/意义】微博用户画像的精准构建,可有效识别用户的需求,提高个性化推荐的准确率。针对现有微
博用户画像构建方法对用户特征提取不全面、不准确的问题,本文提出了基于兴趣转移的用户画像构建方法。【方
/过程】首先,依据层次分析法确定不同兴趣行为的权重,并将其用于修订兴趣词权重,获得用户的初始兴趣词
集;然后,依据生命周期理论获得用户兴趣行为周期,构建兴趣转移的时间衰减函数,实现对用户兴趣词集的动态
更新和叠加;最后,将用户的静态属性标签与基于兴趣转移的动态兴趣标签融合构建微博用户画像。【结果
/结论】
实验采用从新浪微博爬取的真实数据作为数据集,实验结果显示:与已有微博用户画像构建方法相比,本文提出的
方法在个性化推荐中具有较好的性能。【创新
/局限】创新点为:借鉴生命周期理论刻画微博用户兴趣行为周期,构
造兴趣转移的时间衰减函数,实现兴趣标签的动态更新。局限是未对静态属性标签的重要性进行界定,且未对存
在异常波动的兴趣行为曲线进行深入探讨。

Abstract: Purpose/significanceThe accurate construction of microblog user portrait can effectively identify the needs of users and
improve the accuracy of personalized recommendation. In order to solve the problem of incomplete extraction of user features, a user portrait construction method is proposed based on interest transfer.
Method/processFirstly, the weights of different behaviors are de⁃termined by AHP, and used to revise the weights of interest words to obtain the initial interest word set of users; Secondly, the interest behavior cycles of users are obtained according to the life cycle theory, and the time decay function of interest transfer is proposed to dynamic update and superpose the original interest words; Finally, the static attribute labels and the dynamic interest based on interest transfer are integrated to build microblog user portrait.Result/conclusionExperiments use the real data crawled from Sina Weibo as data set. The experimental results indicate that compared with the existing Weibo user portrait construction method, the method pro⁃posed in this paper has better performance in personalized recommendation.Innovation/limitationThe innovation points are: using the life cycle theory to describe the interest behavior cycle of microblog users, constructing the time decay function of interest transfer,and realizing the dynamic update of interest tags. The limitation is that the importance of static attribute tag is not defined, and the in⁃terest behavior curve with abnormal fluctuation is not deeply discussed.