摘要: 【目的/意义】对互联网产生的大量文本数据进行有效分类,提高文本处理效率,为企业用户决策提供建
议。【方法/过程】针对传统的词向量特征嵌入无法获取一词多义,特征稀疏、特征提取困难等问题,本文提出了一种
基于句子特征的多通道层次特征文本分类模型(SFM-DCNN)。首先,该模型通过Bert句向量建模,将特征嵌入从
传统的词特征嵌入升级为句特征嵌入,有效获取一词多义、词语位置及词间联系等语义特征。其次,通过构建多通
道深度卷积模型,将句特征从多层级来获取隐藏特征,获取更接近原语义的特征。【结果/结论】采用三种不同的数
据对模型进行验证分析,采用对比相关的分类方法,SFM-DCNN模型准确率较其他模型分类性能有所提高,这说
明该模型具有一定的借鉴意义。【创新/局限】基于文本分类中存在的一词多义、特征稀疏问题,创新性地利用Bert来
抽取全局语义信息,并结合多通道深层卷积来获取局部层次特征,但限于时间和设备条件,模型没有进行进一步的
预训练,实验数据集不够充分。