摘要: 【目的/意义】基于机器学习算法对信息进行聚类及预测引起了广泛关注,本文将以航空公司客户信息为对
象构建出k-means,BP神经网络模型,对航空用户进行聚类及预测,实现用户的精准营销。【方法/过程】首先,对航
空公司的客户信息进行预处理,并根据信息聚类和信息预测理论,构建出k-means客户聚类模型与BP神经网络的
流失预测模型。【结果/结论】实证结果表明,在聚类模型上,k-means算法将客户聚为五类,实现了不同价值客户的
差异化识别;在客户预测模型上,BP神经网络的准确性更高。【创新/局限】本次研究将LRFMC模型引入到用户聚
类模型的实验中,使得模型泛化能力上存在了一定的局限,但也为该问题的未来研究提供了新的方式。