情报科学 ›› 2021, Vol. 39 ›› Issue (5): 130-137.

• 业务研究 • 上一篇    下一篇

基于多尺度BiLSTM-CNN的微信推文的情感分类模型及应用研究

  

  • 出版日期:2021-05-01 发布日期:2021-05-12

  • Online:2021-05-01 Published:2021-05-12

摘要:

【目的/意义】基于大量UGC数据的情感分析已成为舆情检测和社交组织中的重要任务,对微信推文的情
感分类可为舆情动态调控和舆论趋势监测提供一种可行的管理方法,传统的分类模型大多不考虑文本的上下文语
义关系。【方法/过程】本文在卷积神经网络CNN和LSTM长短期记忆网络的基础之上进行融合构造,构建了一种
基于BILSTM-CNN模型的微信推文情感分类模型。其中BILSTM层充分考虑了上下文信息,使得本模型能够更
好得到文本的情感倾向。【结果/结论】通过不同超参数的组合以及模型对比,验证模型的可行性,为微信推文情感
分类模型和方法研究的构建提供新的理论模型和方法支持。【创新/局限】在今后的工作中,可以对情感极性进行更
为细分的分类,此外因为BiLSTM层中多个双向LSTM导致训练速度很慢,不能并行处理,将研究有效加速模型训
练过程的方法。

Abstract:

【Purpose/significance】Sentiment analysis based on a large amount of UGC data has become an important task in public opin⁃
ion detection and social organizations. Emotion classification of WeChat tweets can provide a feasible management method for public
opinion dynamic regulation and public opinion trend monitoring. Most traditional classification models do not consider the contextual se⁃
mantic relationship of the text.【Method/process】This paper first combined CNN(the conventional neural network) and LSTM(long-term and short-term memory networks) to reconstruct the BiLSTM-CNN model, and then created a WeChat tweet sentiment classification model based on it.The model can get the emotional tendency of the text better, since the BiLSTM layer has given full consideration to contex⁃tual information.【Result/conclusion】Through the combination of different hyper parameters and model comparisons, the feasibility of the model is verified, and new theoretical models and methodological support are provided for the construction of WeChat tweets senti⁃ment classification models and method research.【Innovation/limitation】In the future work, we can classify the polarity of emotion in amore detailed way. In addition, because there are multiple bidirectional LSTMs in the BiLSTM layer, the training speed is very low and cannot be processed in parallel. We will study the methods to effectively accelerate the model training process.