情报科学 ›› 2021, Vol. 39 ›› Issue (3): 60-66.

• 理论研究 • 上一篇    下一篇

基于LDA与关联规则的政府信息资源
主动推送服务模式构建研究

  

  • 出版日期:2021-03-01 发布日期:2021-03-15

  • Online:2021-03-01 Published:2021-03-15

摘要:

【目的/意义】政府信息资源是我国信息资源的重要组成部分,通过探析政府信息资源主动推送服务模式,
有助于缓解信息过载和资源闲置问题,提高政府信息资源利用率。【方法/过程】以政府信息资源主动推送全过程为
基础,采用“三横两纵”的设计思路,创新政府信息资源主动推送模式。以LDA模型和关联规则挖掘为主要技术,对
政府信息文本进行主题提取与聚类,挖掘用户兴趣,并构建信息主题关联网,最终通过相似度计算完成信息与用户
的匹配,实现主动推送。【结果/结论】通过对热点信息、个性信息以及关联信息的混合式推送方式,助力政府在信息
服务方面实现查缺补漏、私人定制及关联预测,提高政府信息的易知性、易用性和易理解性。【创新/局限】本文将
LDA模型与关联规则同时应用于政府信息资源推送中具有一定的创新性,但是由于政务文本语境存在特殊性,直
接运用LDA模型进行语义挖掘不能达到最佳效果。

Abstract:

【Purpose/significance】Government information resources are an important part of our country's information resources. By
analyzing the active push service mode of government information resources, we can alleviate the problem of information overload and
idle resources, and improve the utilization rate of government information resources.【Method/process】Based on the whole process of
government information resources active push, the design idea of "three horizontal and two vertical" is adopted to innovate the mode of
government information resources active push. With LDA model and association rule mining as the main technology, subject extrac⁃
tion and clustering of government information text are carried out, user interest is mined, and information subject and related network
is built. Finally, information and user matching are achieved through similarity calculation to achieve active push.【Result/conclusion】
Through the hybrid push of hot spot information, personal information and related information, we can help the government to find out
as well as make up the missing, private customization and related prediction in information service, and improve the intelligibility, us⁃
ability and understandability of government information.【Innovation/limitation】In this paper, it is innovative to apply LDA model and
association rules to push government information resources at the same time. However, because of the particularity of the context of
government text, semantic mining directly using LDA model can not achieve the best results.