情报科学 ›› 2021, Vol. 39 ›› Issue (2): 137-145.

• 业务研究 • 上一篇    下一篇

基于SIRS模型的微博社区舆情传播与预警研究

  

  • 出版日期:2021-02-01 发布日期:2021-03-11

  • Online:2021-02-01 Published:2021-03-11

摘要:

【目的/意义】探索微博社区内的舆情传播规律以实现舆情预警具有较强的现实意义。【方法/过程】构建
SIRS舆情传播的动态演化模型,分析舆情不同演化状态下的阈值特征,得到舆情预警的充分条件。运用灰色预测
方法与马尔科夫模型进行阈值未来趋势预测实现舆情风险预警,并基于预警结果划分等级。最后利用python软件
挖掘微博社区中热点案例的历史数据,进行模型拟合以检验其有效性。【结果/结论】结果表明:已感染类网民占比
根据不同的阈值特征出现不同的演化趋势;网民基于信息传递价值递减出现自然移除,政府部门可以通过辟谣等
方式降低信任系数,从而使得舆情逐渐消亡。【创新/局限】构建线性感染条件下SIRS舆情传播模型并引入自然移除
率,以期把握微博社区中网民的情绪感染规律实现数据的初步预测并划分舆情等级,进而建立完善的舆情预警机
制。但在目前研究中仍存在一定的不足,即网民情绪类型还需进一步扩展。

Abstract:

【Purpose/significance】It is of great practical significance to clarify the laws of public opinion propagation in the Weibo com⁃
munity to achieve public opinion early warning.【Method/process】Construct a dynamic evolution model of SIRS public opinion propa⁃
gation, analyze the threshold characteristics of public opinion under different evolution states, and obtain sufficient conditions for pub⁃
lic opinion early warning.The gray prediction method and Markov model are used to predict the threshold future trend to realize the ear⁃
ly warning of public opinion risk, and classify based on the early warning results.Finally, use Python software to mine historical data of
hot cases in the Weibo community,and perform model fitting to test its validity.【Result/conclusion】The results show that: the propor⁃
tion of infected netizens has different evolutionary trends according to different threshold characteristics. Netizens are naturally re⁃
moved based on the diminishing value of information transmission, and government departments can reduce the trust coefficient
through rumors and other methods, so that the public opinion gradually disappear.【Innovation/limitation】Construct a SIRS public opin⁃
ion propagation model under linear infection conditions and introduce natural removal rates, in order to grasp the law of emotional in⁃
fection of netizens in the Weibo community to achieve preliminary data prediction and classification of public opinion levels, and then
establish a sound public opinion early warning mechanism. However, there are still some shortcomings in the current research, that is,
the types of netizens' emotions need to be further expanded.