情报科学 ›› 2024, Vol. 42 ›› Issue (7): 126-136.

• 业务研究 • 上一篇    下一篇

人工智能生成内容(AIGC)用户采纳意愿影响因素识别研究 ——以ChatGPT为例

  

  • 出版日期:2024-07-01 发布日期:2024-11-05

  • Online:2024-07-01 Published:2024-11-05

摘要: 【目的/意义】分析影响人工智能生成内容(AIGC)用户采纳意愿的要素,探究 AIGC用户采纳意愿影响因 素模型架构和因子关联路径,为 AIGC 用户采纳意愿研究提供理论依据,为本土 AIGC 产品设计提供相应的建议。 【方法/过程】基于扎根理论,采用半结构化的访谈方式,对 45 名 ChatGPT 用户进行深度访谈,结合解释结构模型 (ISM)探索 AIGC 用户采纳意愿影响因素并进行整合分析与关系梳理,并通过交叉影响矩阵相乘法模型 (MICMAC)进行解释和验证。【结果/结论】确定了信息质量、用户感知、技术特点三个维度共15项影响AIGC用户 采纳意愿的因素,并构建了AIGC用户采纳意愿影响因素解释结构模型,确定了各级因素内部关联路径间的作用关 系,并为本土 AIGC 产品的发展提供了相应的启示和建议。【创新/局限】本研究通过深度访谈和扎根理论,构建了 AIGC用户采纳意愿影响因素模型,揭示了内在关联路径,为本土AIGC产品设计和理论研究提供科学、有效的建议 和启示。然而,研究样本仅限于ChatGPT用户,可能存在一定局限性。

Abstract: 【Purpose/significance】This study aims to analyze the factors influencing the adoption intention of Artificial Intelligence Generated Content (AIGC) by users, explore the architecture of the factors influencing AIGC adoption intention, and examine the path relationships among these factors. The findings of this study provide a theoretical basis for research on AIGC adoption intention and of⁃ fer relevant recommendations for the design of local AIGC products.【Method/progress】Grounded theory was employed, and semistructured interviews were conducted with 45 ChatGPT users. The Interpretive Structural Modeling (ISM) technique was utilized to ex⁃ plore and analyze the factors influencing AIGC adoption intention, followed by relationship mapping and validation using the Matrix Impact Cross-Reference Multiplication Applied to Classification (MICMAC) model.【Result/conclusion】Fifteen factors influencing AIGC adoption intention were identified across three dimensions: information quality, user perception, and technological characteris⁃ tics. An interpretive structural model was constructed to depict the relationships among these factors, highlighting the interaction paths between different levels of factors. The study provides insights and recommendations for the development of local AIGC products.【In⁃ novation/limitation】Through in-depth interviews and grounded theories, this study constructed a model of influencing factors of AIGC users' willingness to adopt, revealed the internal correlation path, and provided scientific and effective suggestions for local AIGC product design and theoretical research. However, the study sample was limited to ChatGPT users and may have some limitations.