摘要:
【目的/意义】对突发事故灾难舆情信息进行精准画像,实现高传播信息的早期分类与识别,并实施精准化
的引导对策。【方法/过程】以长沙自建房倒塌事件的微博数据为例,首先使用熵权法对信息传播效果进行评价,其
次采用K-Modes聚类对高传播信息构建信息画像,最后基于XGBoost算法构建分类预测模型,并比较不同模型的
预测效果。【结果/结论】根据信息画像可将突发事故灾难舆情信息划分为“高传播-官方救援报道类信息”“高传
播-官方事故处置类信息”“高传播-大V情感表达类信息”“高传播-官方事故损失类信息”和“低传播信息”五类。
同时,XGBoost算法相比其他机器学习分类算法预测性能最好,准确率可达93.94%。【创新/局限】提出一种基于画像
的网络舆情信息传播效果的预测方法,以实现对突发事故灾难舆情信息的精准预测;未来会增加多个舆情事件作
为数据集并结合深度学习算法,进一步提升模型预测效果。