情报科学 ›› 2024, Vol. 42 ›› Issue (2): 43-55.

• 理论研究 • 上一篇    下一篇

面向突发自然灾害事件的政务微博舆情动态预警机制研究

  

  • 出版日期:2024-02-05 发布日期:2024-06-07

  • Online:2024-02-05 Published:2024-06-07

摘要:

【目的/意义】党的二十大报告提出“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”。政务微
博已成为政府部门发布自然灾害事件信息的重要平台,建立有效的政务微博舆情预警机制,有助于及时掌握舆情
走势,为网络空间治理和调整应急救助救灾决策提供参考依据。【方法/过程】研究建立了包含突发自然灾害事件中
网民情绪状态预测模块和舆情警级识别模块的政务微博舆情预警系统,并对政府自然灾害救助应急响应等级与舆
情风险等级进行了联合分析,划分了四种情况,提高了应急管理的操作性和针对性。通过“河南遭遇特大暴雨”案
例验证了舆情预警系统的准确性和适用性。【结果/结论】检验结果表明:新陈代谢灰色马尔科夫动态预测模型显著
提高了舆情预警的预测精度,结合灰色关联分析建立的警级识别方法结果可靠。研究有助于健全政府部门对突发
自然灾害舆情风险的应急管理体系,建立预警与响应的联动机制,提升应急管理能力。【创新/局限】研究以动态预
测的理念引入了新陈代谢模型,并建立了自然灾害事件舆情预警与应急响应的联动机制,未来可进行多案例、多情
景的验证。

Abstract:

【Purpose/significance】 The report of the Twentieth National Congress of the Communist Party of China proposed to "im⁃
prove the capability of disaster prevention, reduction and relief and the ability to deal with emergencies". Government microblog has
become an important platform for government departments to release information on natural disaster relief events.
【Method/process】
The establishment of an effective public opinion early warning mechanism is helpful to grasp the trend of public opinion in time and
provide a reference basis for adjusting emergency relief decisions. The metabolic grey Markov dynamic prediction model is estab⁃
lished. On this basis, the discrimination rules of public opinion alarm level are established based on grey correlation analysis.【Result/
conclusion】 Through the case test of "Henan encountered heavy rain", it shows that the model significantly improves the prediction ac⁃
curacy, and the alarm level identification method is reliable. It will help to improve the emergency management system of government
departments for public opinion risk of sudden natural disasters, establish a linkage mechanism between early warning and response,
and improve emergency management capabilities.【Innovation/limitation】 The research introduced the metabolic model with the con⁃
cept of dynamic prediction, and established the linkage mechanism of public opinion warning and emergency response.