摘要: 【目的/意义】探究针对微博文本的基于深度学习的情绪分类有效方法,研究微博热点事件下用户转发言论
的情绪类型与隐私信息传播的关系。【方法/过程】选用BERT、BERT+CNN、BERT+RNN和ERNIE四个深度学习
分类模型设置对比实验,在重新构建情绪7分类语料库的基础上验证性能较好的模型。选取4个微博热点案例,从
情绪分布、情感词词频、转发时间和转发次数四个方面展开实证分析。【结果/结论】通过实证研究发现,用户在传播
隐私信息是急速且短暂的,传播时以“愤怒”和“厌恶”等为代表的消极情绪占主导地位,且会因隐私信息主体的不
同而产生情绪类型和表达方式上的差异。【创新/局限】研究了用户在传播隐私信息行为时的情绪特征及二者的联
系,为保护社交网络用户隐私信息安全提供有价值的理论和现实依据,但所构建的语料库数据量对于训练一个高
准确率的深度学习模型而言还不够,且模型对于反话、反讽等文本的识别效果不佳。