摘要: 【目的/意义】负面在线评论已成为商家重要的经营决策信息,对了解客户消费满意度、改善产品和服务质量
具有重要意义。【方法/过程】该文将情感分析和关键词抽取相结合,提出一种基于BiGRU-CNN 和 TextRank的在
线评论负面关键词抽取方法,即首先对在线评论文本数据进行清洗,然后构建 BiGRU- CNN 情感分类模型对在
线评论进行情感分析,最后采取TextRank 方法抽取情感分析得到的负面评论中的关键词。利用这种方法,对十个
产品与服务类别的6万余条消费者在线评论文本数据进行实证分析。【结果/结论】实验结果表明,该方法能准确判
别客户负面在线评论情感倾向,F1值达92.41%,并且负面在线评论关键词抽取结果能较好帮助商家完善产品质量
和服务。【创新/局限】提出一种结合双向GRU 和CNN 结合的情感分类模型,在此基础上基于TextRank 方法抽取
情感分析得到的负面评论中的关键词,进一步提升模型对于在线评论情感分析的准确性。