情报科学 ›› 2022, Vol. 40 ›› Issue (5): 111-117.

• 业务研究 • 上一篇    下一篇

基于情感分析与TextRank的负面在线评论关键词抽取 

  

  • 出版日期:2022-05-01 发布日期:2022-05-30

  • Online:2022-05-01 Published:2022-05-30

摘要: 目的/意义】负面在线评论已成为商家重要的经营决策信息,对了解客户消费满意度、改善产品和服务质量
具有重要意义。【方法
/过程】该文将情感分析和关键词抽取相结合,提出一种基于BiGRU-CNN TextRank的在
线评论负面关键词抽取方法,即首先对在线评论文本数据进行清洗,然后构建
BiGRU- CNN 情感分类模型对在
线评论进行情感分析,最后采取
TextRank 方法抽取情感分析得到的负面评论中的关键词。利用这种方法,对十个
产品与服务类别的
6万余条消费者在线评论文本数据进行实证分析。【结果/结论】实验结果表明,该方法能准确判
别客户负面在线评论情感倾向,
F1值达92.41%,并且负面在线评论关键词抽取结果能较好帮助商家完善产品质量
和服务。【创新
/局限】提出一种结合双向GRU CNN 结合的情感分类模型,在此基础上基于TextRank 方法抽取
情感分析得到的负面评论中的关键词,进一步提升模型对于在线评论情感分析的准确性。

Abstract: Purpose/significanceWith the development of e-commerce, an increasing number of people began to shop online and make comments.These online reviews have become important decision-making information for the business,which is of great signifi⁃cance to understand customer satisfaction and improve product and service quality.Method/processThis paper combines sentiment analysis and keyword extraction to propose a method for negative keyword extraction of online reviews based on BiGRU-CNN and Tex⁃tRank.On the basis of cleaning more than 60,000 online reviews,the BiGRU-CNN sentiment classification model was constructed to analyze the sentiment of online reviews,and then the keywords of the negative reviews were extracted based on the TextRank method.
Result/conclusionThe experimental result showed that the method could accurately judge the sentiment orientation of customers' on⁃line reviews.The F1 value reaches 92.41%,and the keywords of negative online review extraction results can better help the merchants to improve product and service quality.Innovation/limitationThe paper proposes an emotion classification model based on bidirec⁃tional GRU and CNN.On this basis,it extracts keywords from negative comments from emotion analysis based on TextRank method to further improve the accuracy of the model for online comment emotion analysis.