摘要: 【目的/意义】关键词抽取的本质是找到能够表达文档核心语义信息的关键词汇,因此使用语义代替词语进
行分析更加符合实际需求。本文基于TextRank词图模型,利用语义代替词语进行分析,提出了一种基于语义聚类
的关键词抽取方法。【方法/过程】首先,将融合知网(HowNet)义原信息训练的词向量聚类,把词义相近的词语聚集
在一起,为各个词语获取相应的语义类别。然后,将词语所属语义类别的窗口共现频率作为词语间的转移概率计
算节点得分。最后,将TF-IDF值与节点得分进行加权求和,对关键词抽取结果进行修正。【结果/结论】从整体的关
键词抽取结果看,本文提出的关键词抽取方法在抽取效果上有一定提升,相比于TextRank算法在准确率P,召回率
R以及 F值上分别提升了 12.66%、13.77%、13.16%。【创新/局限】本文的创新性在于使用语义代替词语,从语义层面
对相关性网络进行分析。同时,首次引入融合知网义原信息的词向量用于关键词抽取工作。局限性在于抽取方法
依赖知网信息,只适用于中文文本抽取。