情报科学 ›› 2022, Vol. 39 ›› Issue (1): 109-120.

• 业务研究 • 上一篇    下一篇

国外政府数据开放研究的主题关联结构与演化态势 

  

  • 出版日期:2022-01-01 发布日期:2022-01-12

  • Online:2022-01-01 Published:2022-01-12

摘要: 【目的/意义】数字时代“开放政府数据”热潮产出了丰硕成果,对其研究主题结构和演化脉络进行全面、精
准的可视化揭示,有助于进一步丰富和完善该领域研究,科学地指导我国实践开展。【方法
/过程】以 2000-2019
WOS数据库中“开放政府数据”主题文献为基础,借助新型SLM算法探测主题社区,梳理研究主题分布;同时嵌入
SNA方法,引入“传导率”指标定量评估主题社区成熟度和内外部关联,并利用Cortext平台构建时序演进过程。【结
/结论】国外开放政府数据研究已形成四类主题社区:健康社区、开放数据社区、管理社区以及安全社区,目前仍
存在“主题遍布粒度不够细化、新兴主题社区亟需成长、演化脉络断续明显”等问题。【创新
/局限】嵌入新型算法
SLM 划分主题社区,结合 LDA 模型对国外 OGD 研究主题关联与演化进行了完整阐释。但本文仅选取 WOS核心
库的相关主题文献作为数据源
,存在进一步扩充的空间。

Abstract: Purpose/significanceThe upsurge ofOpen Government Datain the digital era has produced fruitful results.A compre⁃hensive and accurate visualization of the thematic structure and evolution of its research will help to further enrich and improve the re⁃search and scientifically guide the practice in China.Method/processFirstly.literature on "Open Government Data" from the WOS database from 2000 to 2019 was selected.and keywords co-occurrence network was extracted.Secondly.the new SLM algorithm is used to detect the thematic community.and the distribution of the research is organized.At the same time.the Social Network Analysis meth⁃od is embedded and the "conductivity" index is introduced to quantitatively evaluate the maturity and internal and external relevance of the thematic community.Finally.the Cortext platform is used to construct the time series evolution process. Result/conclusionFor⁃eign OGD research has formed four types of themed communities:Health communities.Open Data communities.Management communi⁃ties and Security communities.At present.there are still some problems.such as the granularity of the theme spread is not fine enough.the emerging theme community needs to grow up urgently.and the evolution line is obviously discontinuous. Innovation/limitationA new algorithm SLM is embedded to divide the thematic community.and then the thematic relevance and evolution of OGD research abroad are fully explained combined with LDA model.But this article only selects related subject literatures in the WOS core collection
as the data source and there is room for further expansion.