情报科学 ›› 2021, Vol. 39 ›› Issue (9): 67-73.

• 理论研究 • 上一篇    下一篇

基于深度学习的电商评论信息多刻面情感分类研究 

  

  • 出版日期:2021-09-01 发布日期:2021-10-21

  • Online:2021-09-01 Published:2021-10-21

摘要: 【目的/意义】文本情感分类是近年来情报学领域的研究热点之一。已有研究大多关注针对目标文本的单
一情感分类。本文旨在探索基于深度学习的电商评论信息多刻面情感分类方法。【方法
/过程】提出一种基于Atten⁃
tion-BiGRU-CNN
的多刻面情感分类模型,通过BiGRUCNN获取上下文信息和局部特征,利用Attention机制
优化隐层权重,以深度挖掘文本内隐语义和有效刻画多刻面情感。【结果
/结论】在中文电商评论信息语料上的实验
表明,相较于其他神经网络模型,本文方法可有效提高多刻面情感分类的准确度。【创新
/局限】进一步丰富多刻面
情感分类的方法途径,为深度挖掘电商评论信息以及优化产品和营销策略提供参考。本文语料主要基于单一类别
电商评论信息,聚焦可归纳刻面的情感分类,进一步的研究可面向类别多元化、需通过深度学习提取刻面信息的更
大规模语料展开。

Abstract: Purpose/significanceSentiment classification/analysis has become an important issue in information sciences, with sub⁃stantial light shed on one overall sentiment for one textual target. The present research seeks to explore a deep learning basedmulti-aspect sentiment classification approach.Method/processAn Attention-BiGRU-CNN model is contrived. The BiGRU and CNN layers aim at effectively capturing contextual information and local features, while the attention mechanism is incorporated to op⁃timize the weights of hidden layers. The model is expected to essentially delve into the deep semantics of text for multi-sentiment knowledge.Result/conclusionExperiments on a Chinese e-commerce review corpus evidence the superiority of the proposed method over other neural networks based models, with effectively improved accuracy in multi-aspect sentiment classification. Innovation/limi⁃tationThe research adds to literature of multi-aspect sentiment classification/analysis with methodological and practical implications
for e-commerce product improvement and marketing optimization. Further effort could be made to investigate a more scalable multi-aspect sentiment classification approach for large and cross-domain corpus whose aspects is implicitly complex and should be extracted by dedicated deep learning approaches.