摘要: 【目的/意义】舆情主题识别一直是舆情领域的研究热点,如今已有丰富的研究成果。现有研究对舆情信息
进行表征时多采用了传统的词袋模型、主题模型或词向量模型,只能对词语进行唯一的向量表征且传统模型需对
文本分词,可能会因分词错误、数据稀疏、出现集外词等情况影响识别效果。【方法/过程】本文构建了一种基于多采
样双向编码表示的网络舆情主题识别模型,在训练前无需对文本进行分词,针对文本过长的情况采用头尾结合的
方式进行截断,从字、段、位置三个维度提取特征嵌入,通过自注意力机制进行舆情表征,在训练过程中使用区分性
微调和多采样dropout的方法增强泛化能力,提升识别效果。【结果/结论】实验结果表明构建模型在舆情主题分类任
务中表现良好,可以在不对文本分词的情况下实现对舆情主题的准确识别。【创新/局限】创新之处在于构建了一种
新型的网络主题识别模型,局限之处在于算法复杂,如何进一步调参优化是接下来的研究重点。