情报科学 ›› 2021, Vol. 39 ›› Issue (3): 143-149.

• 业务研究 • 上一篇    下一篇

融合潜在兴趣和多类型情景信息的兴趣点推荐模型

  

  • 出版日期:2021-03-01 发布日期:2021-03-15

  • Online:2021-03-01 Published:2021-03-15

摘要:

【目的/意义】在现有的兴趣点推荐工作普遍存在数据稀疏和低精确率问题的基础上,提出了一种融合潜在
兴趣和多类型情景信息的兴趣点推荐模型。【方法/过程】该模型分为矩阵填充和矩阵分解两个阶段。首先利用社
交和地理信息建立矩阵填充模型,为每个用户学习一组待填充兴趣点。其次,将分类信息嵌入加权矩阵分解模型
来学习用户偏好。最后,采用自适应核密度估计对地理影响建模,结合矩阵分解的结果得到GSC-WMF模型。【结
果/结论】实验结果表明,该模型在推荐的准确率和召回率上相较其他主流模型取得了更好的结果。【创新/局限】提
出了矩阵填充模型来发掘用户的潜在兴趣,并有效地将融合分类信息来解决用户隐式信息反馈问题。在未来的研
究工作中,将考虑利用深度学习技术来改善推荐性能。

Abstract:

【Purpose/significance】Since the current works of point of interest recommendation exist sparsity and low accuracy, this pa⁃
per proposed a point of interest recommendation model combining potential check-ins and multi-type contextual information.【Meth⁃
od/process】The model is divided into two stages of matrix filling and matrix decomposition. Firstly, established a matrix filling model
by using social and geographic information to learn a set of points of interest for each user. Secondly, the classification information is
embedded into the weighted matrix decomposition model to learn user preferences. Finally, the adaptive kernel density estimation is
used to model the geographical influence, and the GSC-WMF model is obtained by combining the results of matrix decomposition.
【Result/conclusion】The experimental results show the proposed model outperforms state-of-the-art recommendation models in terms
of precision and recall.【Innovation/limitation】Matrix filling model is proposed to explore the potential interest, and the category infor⁃
mation is effectively fused to address the problem of implicit information feedback. In the future research work, we will introduce the
deep learning to improve recommendation performance.