情报科学 ›› 2021, Vol. 39 ›› Issue (3): 107-112.

• 业务研究 • 上一篇    下一篇

基于深度学习模型的摘要结构功能识别方法研究

  

  • 出版日期:2021-03-01 发布日期:2021-03-15

  • Online:2021-03-01 Published:2021-03-15

摘要:

【目的/意义】学术文献的摘要由目的、方法、结果等结构组成,这些结构具有特定的功能。目前,针对摘要
功能结构识别的研究不多,且存在识别效率不高的问题,本文引入双向循环神经网络(Bidirectional Recurrent Neu⁃
ral Network, BiRNN)、双向长短时记忆网络(Bidirectional Long Short Term Memory, BiLSTM)、BiLSTM-CRF、
BERT等深度学习模型,对1232篇情报类期刊论文进行摘要结构功能识别研究。【方法/过程】引入5折交叉验证法
进行多次实验,以避免一次实验的偶然性;实验结果用“均值±标准差”形式表示,同时考虑模型的平均性能和稳定
性;实验结果用F1值进行评价。【结果/结论】与BiRNN、BiLSTM、BiLSTM-CRF等模型相比,BERT模型具有最高
的均值和最低的标准差,这表明该模型不仅具有最优的结构功能识别能力,而且性能稳定,该模型特别适用于摘要
结构功能识别任务。【局限/创新】本文采用的实验语料规模较小且为人工标注,这限制了识别效率的提升。

Abstract:

【Purpose/significance】The academic-literature abstract is composed of several structures with specific functions, such as
purpose, method, result.【Method/process】There are few researches on the recognition methods of abstract structure function, and the
proposed methods performed poor. In view of this, bidirectional recurrent neural network (RNN), bidirectional long short-term memory
(BiLSTM), BiLSTM-CRF and bidirectional encoder representations from transformers (BERT) are introduced to summarize the journal
articles of 1232 CNKI databases. In our experiments, The 5-fold cross validation is used to avoid contingency, the experiment results
are represented by 'average ± standard deviation', which takes the average performance and stability into consideration, the experi⁃
ment results are evaluated by F1-value.【Result/conclusion】The comparative experiment results show that compared with BiRNN,
BiLSTM, BiLSTM-CRF, BERT performs best with highest average and lowest standard deviation, which indicates that this model is
quite fit for recognition of abstract structure function.【Innovation/limitation】The experimental corpus is small-scale and artificial-an⁃
notation, which limits the improvement of recognition performance.