情报科学 ›› 2021, Vol. 39 ›› Issue (2): 86-95.

• 理论研究 • 上一篇    下一篇

基于高校科学数据生命周期的社会科学数据特征研究

  

  • 出版日期:2021-02-01 发布日期:2021-03-11

  • Online:2021-02-01 Published:2021-03-11

摘要:

【目的/意义】基于高校数据生命周期,从科学数据利用视角出发,深入探讨社会科学数据的基本特征,可为
我国政府和数据管理机构优化社会科学数据管理提供一定的现实依据。【方法/过程】选择学科交叉性较强的物流
研究领域内2009-2019年间的中文期刊论文为样本,利用文献计量、内容分析、社会网络分析等混合研究方法,从数
据创建、数据分析、数据公开三方面对社会科学数据特征进行量化分析。【结果/结论】社会科学数据的创建主体主
要为政府机构、行业协会与企业、科研机构与研究者,依据研究范式不同,研究者在使用科学数据时,常具有混用多
种类型科学数据、采用专业分析工具偏少、数据规范性不强等特点,进而提出相关建议。【创新/局限】构建了数据利
用视角下高校科学数据生命周期模型,对社会科学数据特征进行深入研究;仍存在样本容量有待进一步扩充、难以
完全展现期刊论文中利用科学数据的全过程等局限。

Abstract:

【Purpose/significance】Based on the life cycle of university data, this paper approaches the perspective of scientific data
utilization and explores the basic characteristics of social scientific data in depth, which can provide a certain practical basis for the
government and data management institutions in China to formulate social science data management policies in the later stage.【Meth⁃
od/process】We select Chinese journals in the field of logistics research with strong interdisciplinary intersection from 2009 to 2019 as
samples, and use mixed research methods including literature measurement, content analysis, social network analysis, etc. to conduct
a quantitative analysis on the characteristics of social scientific data from three aspects of data creation, data analysis, and data disclo⁃
sure.【Result/conclusion】We find that the main body who creates social scientific data is government agencies, industry associations
and enterprises, scientific research institutions and researchers. And according to different research paradigms, researchers often mix
different types of scientific data when using it. The utilization rate of professional analysis tools and the degree of data standardization
are relatively low. Finally, some relevant suggestions are put forward based on the findings.【Innovation/limitation】This paper con⁃
structs the life cycle model of university scientific data from the perspective of data utilization, and further studies the characteristics
of social science data. However, there are still problems such as the sample size needs to be further expanded and it is difficult to fully
show the whole process of using scientific data in journal articles.