摘要: 【目的/意义】从大数据驱动角度出发,探索采用人工智能方法实现对政策文本协同性定量分析的可能性。
【方法/过程】以政策全文本数据为研究对象,使用知识图谱技术实现不同主题的本体构建,并应用数据挖掘中关联
规则构建推理模型,对图谱表示的政策文本进行协同性语义挖掘和推理。【结果/结论】围绕“开放数据”和“数据安
全”主题构建知识图谱,实现对政策文本的本体表示,在此基础上使用关联规则完成单文本和多文本在两个主题间
的协同性分析。【创新/局限】本文将知识图谱应用于政策文本分析领域,并完成协同性分析,为政策的全样本分析
提供可能性,后续需扩大样本规模,提升推理效率。