情报科学 ›› 2021, Vol. 39 ›› Issue (11): 180-186.

• 博士论坛 • 上一篇    下一篇

基于知识图谱的政策文本协同性推理研究

  

  • 出版日期:2021-11-01 发布日期:2021-11-15

  • Online:2021-11-01 Published:2021-11-15

摘要: 【目的/意义】从大数据驱动角度出发,探索采用人工智能方法实现对政策文本协同性定量分析的可能性。
【方法/过程】以政策全文本数据为研究对象,使用知识图谱技术实现不同主题的本体构建,并应用数据挖掘中关联
规则构建推理模型,对图谱表示的政策文本进行协同性语义挖掘和推理。【结果/结论】围绕“开放数据”和“数据安
全”主题构建知识图谱,实现对政策文本的本体表示,在此基础上使用关联规则完成单文本和多文本在两个主题间
的协同性分析。【创新/局限】本文将知识图谱应用于政策文本分析领域,并完成协同性分析,为政策的全样本分析
提供可能性,后续需扩大样本规模,提升推理效率。

Abstract: 【Purpose/significance】Starting from the big data-driven perspective,the possibility of using artificial intelligence methods
to achieve a quantitative analysis of the synergy of policy texts is explored.【Method/process】The study takes the policy whole text data as the research object,uses the Knowledge Graph technology to realize ontology construction of different topics,and the association rules in data mining to construct a reasoning model,and perform synergy semantic mining and reasoning on the policy text.【Result/con? clusion】Based on the themes of "open data" and "data security",a knowledge graph is constructed to finish the ontology representation of the policy text.The synergy analysis between single text and multiple texts between the two topics is completed by the association rules.【Innovation/limitation】This paper applies the knowledge graph to the field of policy text analysis,and completes the synergy anal? ysis,which provides the possibility for the full sample analysis of policies.In the future the sample size should be expanded to improve reasoning efficiency.