摘要: 【目的/意义】本文构建了一个大规模学术文献致谢功能数据集,并提出一种基于SciBERT的致谢功能识别
模型,为致谢文本的挖掘和分析提供高质量的数据支持和有效的识别方法。【方法/过程】采用人工的方式扩展和完
善致谢功能分类规则,生成学术文献致谢功能自动标引规则模板,对1,750,275条致谢文本进行功能标引。在此基
础上,采用 SciBERT 模型对致谢文本句进行向量表达,引入 Softmax 回归模型实现致谢功能自动分类,采用
warmup策略进行模型调优,并与基准实验进行对比。【结果/结论】得到一个大规模、高质量的学术文献致谢功能数
据集,经人工检验准确率达到93%;基于SciBERT的识别模型比基准模型表现更好,在扩展数据集上的F1值高于
98%,在各个类别上的预测结果也有不同程度的提升。【创新/局限】致谢功能识别模型缺少对致谢文本独有特征的
考虑和融合。