情报科学 ›› 2021, Vol. 39 ›› Issue (11): 127-132.

• 业务研究 • 上一篇    下一篇

基于多层次关联规则挖掘的反恐情报跨层特征关联分析

  

  • 出版日期:2021-11-01 发布日期:2021-11-15

  • Online:2021-11-01 Published:2021-11-15

摘要: 【目的/意义】为了发现更全面、更具有普适性的反恐情报信息,本文在单层次关联规则挖掘的基础上研究
反恐情报的多层次关联规则挖掘方法。【方法/过程】根据反恐情报的数据特征提出统一最小支持度和多单项最小
支持度参数并用的方式筛选多层次涉恐特征频繁项集,在情报分析过程中保存部分特殊的冗余频繁项集、冗余多
层次关联规则和无趣多层次关联规则。【结果/结论】本文的研究可以发现涉恐数据中不同概念分层的关联规律。
[创新/局限] 文中提出的关联分析方法能够弥补普通的单层次关联规则挖掘在分析包含多层属性的涉恐数据中存
在的不足,为反恐预警和反恐决策提供更丰富、更科学、覆盖范围更广的参考。

Abstract: 【Purpose/significance】In order to find more abundant and applicable counter-terrorism intelligence information,this paper
focuses on the mining method of multi-level association rule based on the single-level association rule mining.【Method/process】Ac?
cording to the data characteristics of counter-terrorism intelligence,a method of using uniform minimum support degree and multiple
single minimum support degree parameters is proposed to select frequent itemsets of multi-level terror-related features.In the mining
process,it should save some special redundant frequent itemsets,redundant multi-level association rules and uninteresting multi-level
association rules.【Result/conclusion】This method could find the correlation relationship of different concept hierarchy in the ter?
ror-related data.【Innovation/limitation】This method could make up the deficiency of the common single-level association rule min?
ing in the analysis of the terror-related data containing multi-layer attributes,and provide more scientific and abundant comprehen?
sive references for the counter-terrorism early warning and counter-terrorism decision-making.