摘要: 【 目的/意义】研究从用户群体的角度出发,依据用户特征对社区用户进行群体划分,以了解不同用户群体的
主题差异,从而更加全面清晰的了解社区主题,更好的为社区用户推荐资源。【方法/过程】研究利用社会网络分析
和Topsis算法对用户群体进行划分,再利用LDA模型分别对不同用户进行主题挖掘,最后采用谱聚类实现主题优
化。【结果/结论】科学网情报学社区的核心用户与一般用户群体主题有相同的部分,也存在差异,核心用户群体的
主题专指性较强,一般用户群体的主题较为广泛。基于虚拟学术社区用户群体主题挖掘模型,可以更加全面展示
社区用户关注的主题,更好地为社区用户推荐资源。【创新/局限】研究从用户群体的视角出发,提出了虚拟学术社
区用户群体主题挖掘模型,更好的为社区用户推荐资源,但本研究在数据量、主题模型以及社会网络分析指标的选
取等方面还需要拓展与延伸。