摘要: 【目的/意义】社交媒体在改变新闻传播以及人类获取信息方式的同时,也成为了虚假新闻传播的主要渠
道。因此,快速识别社交媒体中的虚假新闻,扼制虚假信息的传播,对净化网络空间、维护公共安全至关重要。【方
法/过程】为了有效识别社交媒体上发布的虚假新闻,本文基于对虚假新闻内容特征的深入剖析,分别设计了文本
词向量、文本情感、图像底层、图像语义特征的表示方法,用以提取社交网络中虚假新闻的图像特征信息和文本特
征信息,构建多模态特征融合的虚假新闻检测模型,并使用MediaEval2015数据集对模型性能进行效果验证。【结果/
结论】通过对比分析不同特征组合方式和不同分类方法的实验结果,发现融合文本特征和图像特征的多模态模型
可以有效提升虚假新闻检测效果。【创新/局限】研究从多模态的角度设计了虚假新闻检测模型,融合了文本与图像
的多种特征。然而采用向量拼接来实现特征融合,不仅无法实现各种特征的充分互补,而且容易造成维度灾难。