摘要: 【目的/意义】数字期刊阅读在移动网络的推动下已成为互联网使用群体必不可少的活动,分析数字期刊 服务中的用户行为能够掌握用户阅读倾向,提高推送精确度。从用户行为感知的角度出发根据用户信息分析用户 行为轨迹,搭建推送模型,结合推荐算法和用户行为预测模型,实现数字期刊的用户个性化推荐。【方法/过程】本文 使用聚类算法和加权二部图算法计算用户相似度、寻找用户邻居簇,进而预测用户对数字期刊的评分,基于加权 Markov模型预测用户模型,生成数字期刊推送结果。【结果/结论】利用用户行为感知技术对数字期刊服务推送提 出了基本的研究理论框架,依照推荐算法设计对不同用户进行个性化推荐,增强用户信赖感,提高用户对数字期刊 阅读的满意度。