情报科学 ›› 2019, Vol. 37 ›› Issue (4): 59-65.

• 论文 • 上一篇    下一篇

基于多类型分类器装袋技术的数据分类模型研究

  

  • 出版日期:2019-03-05

  • Online:2019-03-05

摘要: 【目的/意义】数据分类是数据挖掘研究的重要内容之一。数据分类时,由于单一分类算法分类性能的差异 性,使其不能很好地解决大部分的分类问题,探讨一种基于多类型分类器装袋技术的数据分类方法具有重要理论 意义和应用价值。【方法/过程】基于分类性能评价的准确率,使用五种不同类型的分类算法作为分类器,随机抽取 训练集后分别训练得到若干个弱分类器,然后采用自动优化加权方式,组合构建一个强的分类器。通过实验对五 种分类算法和装袋算法的分类准确率均值和标准差分别进行对比,得出各分类算法在四种数据集上分类性能的优 劣和稳定性。【结果/结论】在四个UCI数据集上的实验结果表明,与五种不同类型的分类算法相比,装袋算法不仅 在大部分数据集上都表现出很好的稳定性,而且具有更好的泛化能力。