摘要: 【目的/意义】网民对社会现象及问题表达意见、态度使得网络舆情对社会的影响力越来越大,构建模型对 网络舆情的发展进行预测具有现实意义。【方法/过程】通过信息熵理论控制种群初始化,利用遗传算法较强的全 局搜索能力和粒子群算法的局部搜索能力实现对BP神经网络权值的优化,构建混合算法优化的BP神经网络的网 络舆情预测模型并进行实证分析及对比实验。【结果/结论】结果表明,该模型在预测性能上具有更好的优越性及 稳定性。
摘要: 【目的/意义】网民对社会现象及问题表达意见、态度使得网络舆情对社会的影响力越来越大,构建模型对 网络舆情的发展进行预测具有现实意义。【方法/过程】通过信息熵理论控制种群初始化,利用遗传算法较强的全 局搜索能力和粒子群算法的局部搜索能力实现对BP神经网络权值的优化,构建混合算法优化的BP神经网络的网 络舆情预测模型并进行实证分析及对比实验。【结果/结论】结果表明,该模型在预测性能上具有更好的优越性及 稳定性。