摘要: 【目的/意义】文献的向量表示方法对文献主题聚合、聚类和分类等研究具有重要意义。基于二元共现信息 的潜在语义向量空间模型(CLSVSM)挖掘了文本信息中词与词之间的潜在语义关系,与文本向量表示的基本模型- 向量空间模型(VSM)相比很大程度上提高了文本聚类的精度。【方法/过程】为使CLSVSM能更优的提取文献的潜 在语义信息,本文在二元CLSVSM基础上进一步引入了三元共现信息,以深度挖掘文献的潜在语义,通过研究三元 共现矩阵的表示,三元共现频次和相对共现强度的计算方法,最终建立了加权共现潜在语义向量空间模型(加权 CLSVSM)。最后我们分别利用中、英文献数据对二元CLSVSM和加权CLSVSM两类模型进行了实验比较。【结果/ 结论】结果显示:新模型对英文文献的聚类效果与二元CLSVSM相当,但对中文文献主题聚类效果明显要优于二元 CLSVSM。