情报科学 ›› 2017, Vol. 35 ›› Issue (9): 131-135.

• 论文 • 上一篇    下一篇

基于残差修正的多因素灰色模型的网络舆情预测研究

  

  • 出版日期:2017-09-05

  • Online:2017-09-05

摘要: 【目的/意义】精准预测与掌握舆情事件的发展,及时发现舆情中的潜在危机,对社会的长治久安具有重要 意义。【方法/过程】针对网络舆情演化的不确定性、多变性与灰色性等特征,选取多个指标数据建立多因素灰色模 型(MGM(1,m))。同时,为提高预测结果的精确度,利用BP神经网络对多因素灰色模型的预测残差进行修正,构建 基于残差修正的多因素灰色模型,并结合“莆田系事件”对模型预测性能进行验证。【结果/结论】仿真结果表明,相 对于单一序列GM(1,1)模型和无残差修正的多因素灰色模型,残差修正后的多因素灰色模型在网络舆情预测上具 有一定的优势。