情报科学 ›› 2017, Vol. 35 ›› Issue (5): 111-118.

• 论文 • 上一篇    下一篇

基于改进TF-IDF特征提取的文本分类模型研究

  

  • 出版日期:2017-05-05

  • Online:2017-05-05

摘要: 【目的/意义】特征提取会很大程度地影响分类效果,而传统TF-IDF特征提取方法缺乏对特征词上下文环 境和对特征词在类之间分布状况的考虑。【方法/过程】本文提出一种改进TF-IDF特征提取的方法:①基于文本网 络和改进PageRank算法计算节点重要程度值,解决传统TF-IDF忽略文本结构信息的问题;②增加特征值IDF值 的方差来衡量特征词w在不同类别文本集中程度的分布情况,解决传统TF-IDF忽略特征词在类之间分布状况的 不足。【结果/结论】基于该改进方法构建了文本分类模型,对3D打印数据进行分类实验。对比算法改进前后的分 类效果,验证了该方法能够有效提高文本特征词提取的准确度。