情报科学 ›› 2017, Vol. 35 ›› Issue (12): 86-89.

• 论文 • 上一篇    下一篇

一种基于协同过滤的APPS跨类别推荐算法

  

  • 出版日期:2017-12-05

  • Online:2017-12-05

摘要: 【目的/意义】针对主流APPS推荐系统一般仅能推荐同类别APPS的现状,提出了一种基于协同过滤的 APPS跨类别推荐算法(APPSR)。【方法/过程】该算法先对APPS进行聚类,考虑APPS簇间相似度,对未评分APPS 进行评分预测,构建无缺失的用户-APPS评分矩阵。在传统协同过滤技术的基础之上,引入了时间权重函数与热 门APPS惩罚机制,体现了用户兴趣的时效性,消除了热门APPS对推荐结果的影响。根据不同用户对多种APPS的 评分,预测用户对其它类别APPS的喜好,为用户提供跨类别的APPS个性化推荐。【结果/结论】通过实验验证了 APPSR算法的可行性与有效性,为APPS个性化推荐提供了新方法。