·腹部肿瘤·

局部进展期直肠癌术前 3DCRT 或 VMAT 同期化疗后肠壁残余癌细胞分布比较

肖林 祝喻甲 邱波 肖巍巍 余昕 曾智帆 刘孟忠 高远红

510060 广州,华南肿瘤学国家重点实验室 中山大学肿瘤防治中心放疗科;529030 江门 市中心医院肿瘤科二区中山大学附属江门医院(肖林) 通信作者:高远红,Email:gaoyh@sysucc.org.cn. DOI:10.3760/cma.j.issn.1004-4221.2016.07.010

【摘要】 目的 比较术前 3DCRT 或 VMAT+化疗后肠壁各层残余癌细胞(RCC)分布,明确不同 放疗技术对其分布影响。方法 收集 2007—2013 年中山大学肿瘤防治中心诊治、行术前 3DCRT (46 Gy 分 23 次)或 VMAT (50 Gy 分 25 次)+同期化疗及手术的局部进展期直肠癌 334 例,其中 3DCRT 172 例、VMAT 162 例。两组临床Ⅱ、Ⅲ期构成相似。对所有手术标本肠壁各层 RCC 行病理评价。组 间率差异比较采用 χ^2 检验或 Fisher's 精确概率法。结果 术后两组各 ypT、ypN、ypTNM 分期均相近 (P均>0.05)。226例ypT24期患者黏膜层、黏膜下层、固有肌层、浆膜层或外膜层所含 RCC 比例分别 为 34.1%、43.8%、73.5%、69.0%。ypT24、pN (+)、cN (+)、cT4 期 3DCRT 组黏膜层及黏膜下层 RCC 比例均高于 VMAT 组 [47.9%: 18.1%、54.5%: 17.2%、39.8%%: 15.3%、41.3%: 14.3% (P= 0.000,0.001,0.000,0.000)及50.4%: 36.2%、56.8%: 27.6%、43.0%: 26.6%、45.3%: 27.5% (P=0.032,0.014,0.006,0.017)]; pNo, cT, 期 3DCRT 组黏膜层 RCC 比例高于 VMAT 组(28.1%: 12.9%、29.5%: 13.2%, P=0.002、0.015); 两组间固有肌层、浆膜层或外膜层 RCC 比例在 vpT,4, pNo 或 pN(+)、cT₃ 或 cT₄、cN₀ 或 cN(+)期差异均无统计学意义(P均>0.05)。结论 新辅助放化疗后 肠壁各层 RCC 主要位于肠壁固有肌层及浆膜层或外膜层,不同放疗技术不显著影响肠壁内主要 RCC 分布及术后病理分期。

【关键词】 直肠肿瘤/三维适形放射疗法; 直肠肿瘤/容积调强弧形疗法; 直肠肿瘤/新辅助 放化疗法; 残余癌细胞; 病理分期

A comparative study of distribution of residual cancer cells in the bowel wall after preoperative three-dimensional conformal radiotherapy versus volumetric modulated arc therapy with concurrent chemotherapy in treatment of locally advanced rectum cancer Xiao Lin, Zhu Yujia, Qiu Bo, Xiao Weiwei, Yu Xin, Zeng Zhifang, Liu Mengzhong, Gao Yuanhong

Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China; Department of Oncology, Section II, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China (Xiao L) Corresponding authors; Gao Yuanhong, Email; gaoyh@sysucc.org.cn.

[Abstract] Objective To compare the distribution of residual cancer cells (RCC) in each layer of bowl wall after preoperative three-dimensional conformal radiotherapy (3DCRT) versus volumetric modulated arc therapy (VMAT) combined with concurrent chemotherapy, and to investigate the effect of different radiotherapy techniques on the distribution of RCC. **Methods** A total of 334 patients with locally advanced rectum cancer (LARC) who were admitted to our hospital from May 2007 to April 2013 were enrolled as subjects. In those patients, 172 received preoperative 3DCRT (46 Gy/23 F) with concurrent chemotherapy and 162 received VMAT (50 Gy/25 F) with concurrent chemotherapy. There was no significant difference in the distribution of clinical stage II or III between the 3DCRT group and VMAT group. All the RCCs in different layers of surgical specimens were evaluated pathologically. Between-group comparison of data was made by *Pearson* Chi-Square and *Fisher's* exact test. **Results** There were no significant differences in ypT, ypN, or ypTNM staging between the two groups (P values>0.05). In the 226 patients with ypT_{2-4} disease, the proportion of RCC in the mucosa, submucosa, muscularis propria, and subserosa/perirectal fat was 34. 1%,

43. 8%, 73. 5%, and 69. 0%, respectively. In patients with ypT_{24} , pN+, cN+, or cT_4 disease, compared with the VMAT group, the 3DCRT group had significantly higher proportion of RCCs in the mucosa (47. 9% vs. 18. 1%, 54. 5% vs. 17. 2%, 39. 8% vs. 15. 3%, 41. 3% vs. 14. 3%; P = 0.000, 0.001, 0.000, 0.000) and submucosa (50. 4% vs. 36. 2%, 56. 8% vs. 27. 6%, 43. 0% vs. 26. 6%, 45. 3% vs. 27. 5%; P = 0.032, 0.014, 0.006, 0.017). In patients with pN_0 or cT_3 disease, the 3DCRT group had a significantly higher proportion of RCCs in the mucosa than the VMAT group (28. 1% vs. 12. 9%, P = 0.002; 29. 5% vs. 13. 2%, P = 0.015). In patients with ypT_{24} , $pN_0/pN+$, cT_3/cT_4 , or $cN_0/cN+$ disease, there were no significant differences in the proportion of RCCs in the muscularis propria or subserosa/perirectal fat between the two groups (P values > 0.05). **Conclusions** After neoadjuvant chemoradiotherapy, most RCCs reside in the muscularis propria and subserosa/perirectal fat of the bowl wall. There are no significant differences in the distribution of most RCCs in the bowel wall or postoperative pathological staging between patients undergoing different radiotherapy techniques.

[Key words] Rectum neoplasms/three-dimensional conformal radiotherapy; Rectum neoplasms/ volumetric modulated arc therapy; Rectum neoplasms/neoadjuvant chemoradiotherapy ; Residual cancer cell; Pathological staging

局部进展期(T₃₄或 N+)直肠癌 neoCRT 后 TME 是目前国际上标准治疗模式^[1]。但不同患者对放 化疗的反应性差异明显。明确 neoCRT 后手术切除 标本中肠壁各层残余癌细胞分布有助于探讨放化疗 抵抗机制、提高预测 cCR 与 pCR 一致性、选择适合 接受 neoCRT 的患者。目前相关研究在国际上报道 不多。Duldulao 等^[2]率先报道经术前常规 3~4 个 野照射同期联合 5-氟尿嘧啶放化疗后肠壁各层残 余癌细胞分布主要位于黏膜下层以下。既往研究亦 显示术前 VMAT 同期联合化疗后肠壁各层残余癌 细胞亦主要位于固有肌层及浆膜或外膜层^[3]。

迄今,缺乏同期比较不同放疗技术对肠壁各层 残余癌细胞分布影响的研究报道。本研究拟比较术 前 3DCRT 与 VMAT 同期联合化疗后肠壁各层残余 癌细胞的分布差异,明确不同放疗技术是否影响肠 壁各层残余癌细胞分布。

材料与方法

1.病例选择及临床病理特征:收集 2007 年5 月 1 日至 2013 年4 月 10 日在中山大学肿瘤防治中心 诊治、病理诊断明确、病历资料完整、均接受术前 3DCRT 或 VMAT+同期化疗及手术的 334 例局部进 展期 直肠 癌 患者(3DCRT 组 172 例, VMAT 组 162 例),其中男性 228 例、女性 106 例,中位年龄 56.5(15~84)岁,低位直肠癌(直肠肿物下极距肛缘 ≤ 5 cm) 197 例,中位直肠癌(5 cm<直肠肿物下极 距肛缘 ≤ 10 cm)123 例,高位直肠癌(直肠肿物下极 距肛缘 ≤ 10 cm)123 例,高位直肠癌(直肠肿物下极 距肛缘 ≤ 10 cm)14 例。临床 II 期 82 例(II。49 例、 II。20 例、II。13 例), III 期 252 例(III。3 例、III。 136 例、III。113 例)。3DCRT 与 VMAT 组各分期构 成比较见表 1。放化疗前辅助检查包括血常规、肝 肾功能、CEA、电子结肠镜、直肠内窥镜超声、盆腔 MRI或 CT、胸片或 CT、腹部 B 超或 CT 或 MRI、钡灌 肠等。分期标准参照 AJCC 第 7 版直肠癌分期指 南^[4],临床分期时若直肠内窥镜超声与盆腔 MRI 或 CT 或全身 PET-CT 分期不一致时,取分期高者为最 终临床分期。

2.放疗

(1) 放疗定位、靶区定义与勾画: VMAT 前 CT 模拟、靶区定义与勾画等同文献^[3]。 3DCRT 组 CT 模拟定位及靶区定义与勾画等与 VMAT 类似。 VMAT 计划的 GTV 外扩6~9 mm 形成 PTV_1 , CTV 外 扩6~9 mm 形成 PTV_2 。 3DCRT 计划只有 1 个 PTV(PTV_2)。

(2)处方剂量及正常器官限量:VMAT 组靶区 处方剂量 PTV₁ 50 Gy 分 25 次(2 Gy/次),PTV₂ 46 Gy 分 25 次(1.84 Gy/次);3DCRT 组处方剂量仅针 对 PTV₂ 给量(46 Gy 分 23 次,2.0 Gy/次)。所有患 者均 1 次/d、每周一至周五放疗。

(3)治疗计划评价与剂量分布要求:VMAT 计 划 100%处方剂量的等剂量线包括 98%以上 PTV, 最大剂量热点不超过处方剂量 110%;3DCRT 治疗 计划 95%处方剂量的等剂量线包括 95%以上 PTV, 靶区内最低剂量不低于处方剂量 93%。射线能量 6~8 MV(部分 3DCRT 治疗计划侧野采用 15 MV)。 VMAT 治疗计划均采用 Manaco 2.0 TPS 设计(医科 达公司),且均为单弧模式;3DCRT 治疗计划均采用 Pinnacle TPS 常规 3 个野设计,即后野及左右两侧 野,剂量分布为(1.6~2.0):1:1,两侧野常规加 30~60 ℃固定或合成楔形板。

(4) 盆腔正常 OAR 勾画:包括小肠、膀胱、双侧 股骨头,其中小肠勾画至 PTV₂ 上 2 cm 层面。正常 器官限量要求同文献^[3]。

3. 同期化疗:主要方案为Xelox(卡培他滨1.0

g/m² 第1—14 天+奥沙利铂 100 mg/m²,每 3 周重 复); 329 例接受了 1—3 程同期化疗,其中 1 程 Xelox 化疗 26 例,2 程 Xelox 化疗 277 例,2 程卡培他 滨单药 5 例,1 程 Xelox +1 程卡培他滨 4 例,2 程 mFOLFOX6 者 7 例,3 程 mFOLFOX6 者 2 例,2 程 FOLFIRI 者 1 例,1 程 Xelox +1 程 mFOLFOX6 者 1 例,其他类 2—3 程化疗方案 6 例(奥沙利铂/伊立 替康+替吉奥、mFOLFOX 6±贝伐单抗、单药替吉奥 等),5 例患者因各种原因未行同期化疗。

4.手术:所有患者放化疗后6~8周手术,术前常 规复查电子结肠镜、肠内窥镜超声±原发病灶病理 活检、盆腔 MRI或 CT、血象及生化、CEA等。手术 方式由外科医生决定,并遵循 TME 原则。

5.病理评价:术后病理分期标准参照 AJCC 第7 版直肠癌分期指南进行^[4]。所有患者术后切除标 本均及时福尔马林固定、全标本包埋、HE 染色镜 检。对术后肠壁各层残余癌细胞进行详细记录。 pCR 的定义:切除的所有标本(包括直肠原发灶及 区域淋巴结标本)中均无癌细胞存在,病理分期为 ypT₀N₀M₀期。

6.统计方法:采用 SPSS 16.0 软件对不同组间 率比行 X² 检验或 Fisher's 精确概率法。P<0.05 为 差异有统计学意义。

结 果

1. 术后 3DCRT 与 VMAT 病理分期构成比较: 334 例患者中术后 ypT 分期构成与比较见表 2, ypN 病理分期构成与比较见表 3(VMAT 组中 1 例原发灶 为 ypT₀ 期,但淋巴结状态不明,即 pN_x 期)。ypTNM 分期构成比较详见表 4(3DCRT 组中 pN_a、pN_b 期 各 2 例, VMAT 组无一 N 期,两组比较 P=0.123; 2 例患者分期不明确: 3DCRT 组 1 例为 ypT₀N₂aM₀ 期,VMAT 组 1 例为 ypT₀N_xM₀ 期)。

2.3DCRT 与 VMAT 组肠壁各层残余癌细胞分 布总体比较:334 例患者中黏膜层、黏膜下层、固有 肌层、浆膜层或外膜层所含残余癌细胞比例分布与 比较见表 5。

3.3DCRT 与 VMAT 组 ypT₂₄期患者肠壁各层残 余癌细胞分布比较:226 例患者黏膜层、黏膜下层、

表1 334 例局部进展期直肠癌患者 3DCRT 与 VMAT 组各临床分期构成比较[例(%)]

40 Dil		T分期					N 分期	TNM 分期		
组加	T ₁ 期	T ₂ 期	T ₃ 期	T _{4a} 期	T _{4b} 期	N ₀ 期	N1 期	N ₂ 期	Ⅱ期	Ⅲ期
3DCRT	1(0.6)	1(0.6)	95(55.2)	41(23.8)	34(19.8)	44(25.6)	63(36.6)	65(37.8)	44(25.6)	128(74.4)
VMAT	1(0.6)	2(1.2)	68(42.0)	60(37.0)	31(19.1)	38(23.5)	44(27.2)	80(49.4)	38(23.5)	124(76.5)
<i>P</i> 值	1.000	0.613	0.016	0.009	0.884	0.652	0.064	0.033	0.652	0.652

表 2 334 例局部进展期直肠癌患者 3DCRT 与 VMAT 组术后 ypT 分期构成比较[例(%)]

组别	ypT ₀ 期	ypTis 期	ypT ₁ 期	ypT ₂ 期	ypT ₃ 期	ypT _{4a} 期	ypT _{4b} 期
3DCRT	45(26.2)	0	6(3.5)	34(19.8)	79(45.9)	3(1.7)	5(2.9)
VMAT	51(31.5)	2(1.2)	4(2.5)	36(22.2)	67(41.4)	0	2(1.2)
<i>P</i> 值	0.283	0.235	0.822	0.582	0.400	0.248	0.494

表 3 333 例局部进展期直肠癌患者 3DCRT 与 VMAT 组术后 ypN 分期构成比较[例(%)]

<u> </u>	/Fil %hr	···N 即		pN1 期		pN	2 期
纽加	的奴	pin ₀ yr	pN _{1a} 期	pN _{1b} 期	pN _{1c} 期	pN _{2a} 期	pN _{2b} 期
3DCRT	172	128(74.4)	10(5.8)	18(10.5)	6(3.5)	6(3.5)	4(2.3)
VMAT	161	132(81.5)	10(6.2)	8(4.9)	7(4.3)	2(1.2)	2(1.2)
<i>P</i> 值	-	0.120	0.890	0.060	0.694	0.323	0.735

表 4 328 例局部进展期直肠癌患者 3DCRT 与 VMAT 组各 ypTNM 期构成比较[例(%)]

4日 모山	/Fil *h	CD	0 #1	T #0		урⅡ期			_{yp} Ⅲ期	
纽加	初致	урск	0 59	yp I yy	yp Ⅱ _a 期	yp Ⅱ _b 期	yp Ⅱ _c 期	yp Ⅲ _a 期	yp Ⅲ _b 期	yp Ⅲ _c 期
3DCRT	172	43(25.0)	0	34(19.8)	46(26.7)	2(1.2)	1(0.6)	6(3.5)	29(16.9)	6(3.5)
VMAT	162	49(30.2)	2(1.2)	36(22.2)	43(26.5)	0	2(1.2)	5(3.1)	21(13.0)	3(1.9)
<i>P</i> 值	-	0.283	0.235	0.582	0.967	0.499	0.958	0.837	0.318	0.559

固有肌层、浆膜层或外膜层所含残余癌细胞的比例 分布与比较见表 6。

4.3DCRT 与 VMAT 组不同 ypN 分期下 ypT₀ 期 及肠壁各层残余癌细胞分布:表 7 显示 pN₀ 或 pN+ 分期下 3DCRT 与 VMAT 组间 ypT₀ 期及肠壁各层残 余癌细胞分布比较。

表 5 334 例局部进展期直肠癌患者 3DCRT 与 VMAT 组 肠壁各层残余癌细胞分布与比较[例(%)]

组别	例数	黏膜层	黏膜下层	固有肌层	浆膜或外膜层
3DCRT	172	60(34.9)	67(39)	92(53.5)	87(50.6)
VMAT	162	22(13.6)	42(25.9)	74(45.7)	69(42.6)
<i>P</i> 值		0.000	0.011	0.154	0.144

表 6 226 例 ypT₂₄期直肠癌患者 3DCRT 与 VMAT 组 肠壁各层残余癌细胞分布与比较 [例(%)]

组别	例数	黏膜层	黏膜下层	固有肌层	浆膜或外膜层
3DCRT	121	58(47.9)	61(50.4)	92(76.0)	87(71.9)
VMAT	105	19(18.1)	38(36.2)	74(70.5)	69(65.7)
<i>P</i> 值		0.000	0.032	0.345	0.316

表 7 333 例局部进展期直肠癌患者不同 pN 期下 3DCRT 与 VMAT 组间 ypT₀ 期

及肠壁各层残余癌细胞分布与比较[例(%)]

肠壁	pN ₀ 期(260例)		pN+期(
各层残余 癌细胞	3DCRT (128 例)	VMAT (132 例)	P值	3DCRT (44 例)	VMAT (29 例)	P值
ypT ₀ 期	43(33.6)	49(37.1)	0.552	2(4.5)	1(3.4)	1.000
黏膜层	36(28.1)	17(12.9)	0.002	24(54.5)	5(17.2)	0.001
黏膜下层	42(32.8)	34(25.8)	0.211	25(56.8)	8(27.6)	0.014
固有肌层	64(50.0)	58(43.9)	0.328	28(63.6)	16(55.2)	0.470
浆膜或外膜层	51(39.8)	45(34.0)	0.337	36(81.8)	24(82.8)	0.918

5.不同 cT 或 cN 分期下 3DCRT 与 VMAT 组间 肠壁各层残余癌细胞分布比较: cT₃₄分期下 3DCRT 与 VMAT 组间肠壁各层残余癌细胞分布比较见表 8。不同 cN₀、cN+分期下 3DCRT 与 VMAT 组间肠壁 各层残余癌细胞分布比较见表 9。

表 8 329 例 cT₃ 或 cT₄ 期直肠癌患者 3DCRT 与 VMAT 组间肠壁 各层残余癌细胞分布与比较 [例(%)]

肠壁	cT3期(163 例)		cT ₄ 期(
各层残余 癌细胞	3DCRT (95 例)	VMAT (68 例)	P值	3DCRT (75 例)	VMAT (91 例)	<i>P</i> 值
黏膜层	28(29.5)	9(13.2)	0.015	31(41.3)	13(14.3)	0.000
黏膜下层	32(33.7)	17(25.0)	0.233	34(45.3)	25(27.5)	0.017
固有肌层	49(51.6)	30(44.1)	0.347	41(54.7)	44(48.4)	0.418
浆膜或外膜层	43(45.3)	21(30.9)	0.064	43(57.3)	48(52.7)	0.555

表 9 334 例局部进展期直肠癌患者 cN₀ 或 cN+期 直肠癌患者 3DCRT 与 VMAT 组间 肠壁各层残余癌细胞分布与比较[例(%)]

肠壁	cN ₀ 期	(82例)				
各层残余 癌细胞	3DCRT (44 例)	VMAT (38 例)	<i>P</i> 值	3DCRT (128 例)	VMAT (124 例)	P值
黏膜层	9(20.5)	3(7.9)	0.197	51(39.8)	19(15.3)	0.000
黏膜下层	12(27.3)	9(23.7)	0.710	55(43.0)	33(26.6)	0.006
固有肌层	18(40.9)	17(44.7)	0.727	72(56.3)	57(46.0)	0.103
浆膜或外膜层	16(36.4)	15(39.5)	0.722	70(54.7)	54(43.5)	0.077

讨 论

本研究全组患者直肠壁各层残余癌细胞分布数 据显示肠壁各层残余癌细胞呈非均匀性分布,主要位 于固有肌层及浆膜或外膜层,该分布不受放疗技术影 响;全组226例ypT₂₄期患者中残余癌细胞位于固有 肌层及浆膜或外膜层的比例分别为73.5%与69%。 该结论与 Duldulao等^[2]基于2DRT 3~4个野术前放 化疗模式的结果类似,亦再次验证既往报道的结 果^[3]。绝大部分残余癌细胞位于肠壁黏膜下层以下, 影响此现象的可能因素:①治疗前T分期及肠壁各层 癌细胞固有负荷差异;②肿瘤细胞实际接收放化疗剂 量强度的差异;③肿瘤细胞本身的异质性(如肿瘤相 关基因的单核苷酸多态性)、邻近微环境、肿瘤干细胞 等造成对放化疗反应各异^[2,56]。

本研究显示不同放疗技术并不显著影响肠壁固 有肌层及浆膜或外膜层残余癌细胞分布及其术后病 理分期构成。既往剂量学研究显示,在靶区剂量分 布与正常组织保护方面, 3DCRT 技术明显优于 2DRT 技术^[7]:但在局部进展期直肠癌的三维计划 设计中, PTV 常呈马蹄形, 小肠、膀胱等 OAR 常在 马蹄形中央。因此,3DCRT 技术并不能充分实现靶 区剂量最佳分布与 OAR 最佳保护。3DCRT 在此方 面优势明显, IMRT 较 3DCRT 具有更佳的靶区适形 性与剂量分布均匀性,而正常器官如小肠、膀胱、股 骨头等受照剂量与体积更低^[8-9]。VMAT 是一种新 的动态 IMRT,其产生的剂量分布等价于甚至优于常 规静态 IMRT, 而单次治疗时间明显缩短^[10]。毫无 疑问, VMAT 的剂量学分布显著优于 3DCRT^[11]。本 研究中 3DCRT 组与 VMAT 的各临床分期 cⅡ、cⅢ 构成比例均相近, neoCRT 后其各自 ypT、ypN、 ypTNM、ypCR 等构成比亦相近(虽然治疗前 3DCRT 组中的 cN, 比例低于 VMAT 组)。这提示 VMAT 技 术的剂量学优势及针对瘤床的少许推量并不影响其 术后病理分期。正如最新的 RTOG0822 研究显示:

IMRT 在局部进展期直肠癌的新辅助放化疗中的应 用并不显著降低≥2级胃肠道反应。本研究显示虽 然全组 ypT₂₄期患者及 pN+、cN+、cT₄ 期患者 3DCRT 组黏膜层及黏膜下层残余癌细胞的比例均高于 VMAT 组,pN₀、cT₃ 期 3DCRT 组黏膜层残余癌细胞 的比例高于 VMAT 组;但 3DCRT 与 VMAT 组固有 肌层、浆膜或外膜层残余癌细胞的比例在全组患者、 ypT₂₄期患者、pN₀ 或 pN+期、cT₃ 或 cT₄ 期、cN₀ 或 cN+期下均相近。这提示 VMAT 技术的剂量学优势 及其稍高的放疗剂量仅部分影响黏膜层及黏膜下层 的残余癌细胞分布(可能与该部分残余癌细胞靠近 肠壁表层、血供相对丰富,放化疗反应相对偏佳等相 关),但并不显著影响肠壁主要残余癌细胞分布,肿 瘤细胞本身内在放化疗敏感性差异可能是决定反应 性及残余癌细胞分布最重要因素。

本研究提示,通过 neoCRT 后对直肠原发病灶 进行钳取活检判断是否存在残余癌细胞进而预测 pCR 可能行不通。虽然钳取活检一度被认为是最直 接、简单易行的判断 neoCRT 反应性方法^[14]。但因 为常规活检的取材标本大部分局限于黏膜层(或部 分黏膜下层)。我们的结果有助于更好理解为什么 这种活检结果的可信度低,鉴于浆膜或外膜层较高 的残余癌细胞分布,对 neoCRT 反应性较好者采取 肿瘤局部切除策略时务必慎重。基于 X 射线源的 放疗技术优化并不能很好改善放化疗反应性,探讨 放化疗敏感性的研究方向更应聚焦于其内在分子机 制、遗传背景及肿瘤所处微环境等综合因素。鉴于 针对瘤床推量并不显著提高 pCR 率、改善术后病理 分期及肠壁主要残余癌细胞分布,其价值有待进一 步前瞻性探讨。

本研究亦存在一定不足:单中心、回顾性研究, 不排除存在一定样本选择性偏倚;同期放化疗方案 缺乏一致性,部分患者亦在同期放化疗前后、手术前 接受了1—2程诱导化疗,这可能一定程度影响残余 癌细胞分布。

综上所述,新辅助放化疗后肠壁各层残余癌细胞的分布主要位于肠壁固有肌层及浆膜或外膜层, 不同放疗技术(VMAT比3DCRT)并不显著影响肠 壁内主要残余癌细胞分布(固有肌层及浆膜/外膜 层内)及术后病理分期。

参考文献

[1] Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer [J]. N Engl J Med, 2004, 351(17); 1731-1740.DOI; 10.1056/NEJMoa 040694.

- [2] Duldulao MP, Lee WBA, Streja L, et al. Distribution of residual cancer cells in the bowel wall after neoadjuvant chemoradiation in patients with rectal cancer [J].Dis Colon Rectum, 2013, 56(2): 142-149.Doi;10.1097/DCR.0b013e31827541e2.
- [3] 肖林,邓文静,黄蓉,等.直肠癌术前 VMAT 同期化疗后肠壁残 余癌分布及其关联因素探讨[J].中华放射肿瘤学杂志,2014, 23(3):210-214.DOI:10.3760/cma.j.issn.1004-4221.2014.03. 008.

Xiao L, Deng WJ, Huang R, et al. Distribution of residual cancer cells in bowel wall and its associated factors in patients with rectal cancer after preoperative VMAT with concurrent chemotherapy [J].Chin J Radiat Oncol, 2014, 23 (3): 210-214. DOI: 10.3760/cma.j.issn.1004-4221.2014.03.008.

- [4] Edge SB,Byrd DR, Compton CC, et al. American joint committee on cancer (AJCC) cancer staging manual [M].7th ed. New York: Springer Inc, 2010;143-164.
- [5] Ho-Pun-Cheung A, Assenat E, Bascoul-Mollevi C, et al. A largescale candidate gene approach identifies SNPs in SOD2 and IL13 as predictive markers of response to preoperative chemoradiation in rectal cancer [J]. Pharmacogenomics J, 2011, 11 (6): 437-443. DOI:10.1038/tpj.2010.62.
- [6] Dzhugashvili M, Luengo-Gil G, García T, et al. Role of genetic polymorphisms in NFKB-mediated inflammatory pathways in response to primary chemoradiation therapy for rectal cancer [J]. Int J Radiat Oncol Biol Phys, 2014, 90 (3): 595-602. DOI: 10. 1016/j.ijrobp.2014.06.060.
- [7] Corner C, Khinji F, Tsang Y, et al. Comparison of conventional and three-dimensional conformal CT planning techniques for preoperative chemoradiotherapy for locally advanced rectal cancer [J].Br J Radiol, 2011, 84 (998): 173-178. DOI: 10.1259/bjr/ 33089685.
- [8] Arbea L, Ramos LI, Martínez-Monge R, et al. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications [J]. Radiat Oncol, 2010, 5: 17.DOI:10.1186/1748-717X-5-17.
- [9] Mok H, Crane CH, Palmer MB, et al. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma [J]. Radiat Oncol, 2011, 6:63. DOI: 10.1186/1748-717X-6-63.
- [10] Otto K.Volumetric modulated arc therapy:IMRT in a single gantry arc [J]. Med Phys, 2008, 35 (1); 310-317. DOI: 10.1118/1. 2818738.
- [11] Richetti A, Fogliata A, Clivio A, et al. Neo-adjuvant chemoradiation of rectal cancer with volumetric modulated arc therapy: summary of technical and dosimetric features and early clinical experience [J]. Radiat Oncol, 2010, 5 (1): 14. DOI: 10. 1186/1748-717X-5-14.
- [12] Hong TS, Moughan J, Garofalo MC, et al. NRG oncology radiation therapy oncology group 0822: a phase 2 study of preoperative chemoradiation therapy using intensity modulated radiation therapy in combination with capecitabine and oxaliplatin for patients with locally advanced rectal cancer [J].Int J Radiat Oncol Biol Phys, 2015,93(1):29-36.DOI:10.1016/j.ijrobp.2015.05.005.
- [13] Perez RO, Habr-Gama A, Pereira GV, et al. Role of biopsies in patients with residual rectal cancer following neoadjuvant chemoradiation after downsizing: can they rule out persisting cancer? [J]. Colorectal Dis, 2012, 14 (6): 714-720. DOI: 10. 1111/j.1463-1318. 2011. 02761.x.
- [14] Habr-Gama A, Perez RO, Wynn G, et al. Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: characterization of clinical and endoscopic findings for standardization [J].Dis Colon Rectum, 2010, 53(12): 1692-1698. DOI:10.1007/DCR.0b013e3181f42b89.