[an error occurred while processing this directive] | [an error occurred while processing this directive]
Effect and research progress of respiratory motion on intensity-modulated proton therapy
Wang Xianliang, X.Ronald Zhu, Hou Qing
Key Laboratory of Radiation Physics and Technology,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China (Wang XL, Hou Q); Department of Radiotherapy,Sichuan Cancer Hospital,Chengdu 610041,China (Wang XL); Department of Radiation Physics,The University of Texas MD Anderson Cancer Center,Houston 77054,USA (Zhu XR)
Abstract Compared with intensity-modulated photon therapy,intensity-modulated proton therapy has significant dose advantages. However,the dose gradient of proton Bragg peak is relatively high,and the proton therapy is likely to be affected by range uncertainties,setup uncertainties and antonymic changes,etc. The difference between the planning dose and actual dose caused by respiratory motion hinders the widespread use of intensity-modulated proton therapy in thoracic cancers. In this paper,research progress on the effect of respiratory motion on intensity-modulated proton therapy and how to reduce the effect were summarized,aiming to provide reference for clinicians and researchers.
Wang Xianliang,X.Ronald Zhu,Hou Qing. Effect and research progress of respiratory motion on intensity-modulated proton therapy[J]. Chinese Journal of Radiation Oncology, 2018, 27(12): 1106-1109.
Wang Xianliang,X.Ronald Zhu,Hou Qing. Effect and research progress of respiratory motion on intensity-modulated proton therapy[J]. Chinese Journal of Radiation Oncology, 2018, 27(12): 1106-1109.
[1] Muzik J,Soukup M,Alber M.Comparison of fixed-beam IMRT,helical tomotherapy,and IMPT for selected cases[J].Med Phys,2008,35(4):1580-1592.DOI:10.1118/1.2890085. [2] Zhang X,Li Y,Pan X,et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage ⅢB non-small-cell lung cancer:a virtual clinical study[J].Int J Radiat Oncol Biol Phys,2010,77(2):357-366.DOI:10.1016/j.ijrobp.2009.04.028. [3] Lomax AJ.Intensity modulation methods for proton radiotherapy[J].Phys Med Biol,1999,44(1):185-205.DOI:10.1088/0031-9155/44/1/014. [4] Mohan R,Das IJ,Ling CC.Empowering intensity modulated proton therapy through physics and technology:an overview[J].Int J Radiat Oncol Biol Phys,2017,99(2):304-316.DOI:10.1016/j.ijrobp.2017.05.005. [5] Lomax AJ.Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1:the potential effects of calculational uncertainties[J].Phys Med Biol,2008,53(4):1027-1042.DOI:10.1088/0031-9155/53/4/014. [6] Lomax AJ.Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2:the potential effects of inter-fraction and inter-field motions[J].Phys Med Biol,2008,53(4):1043-1056.DOI:10.1088/0031-9155/53/4/015. [7] Georg D,Hillbrand M,Stock M,et al. Can protons improve SBRT for lung lesions? Dosimetric considerations[J].Radiother Oncol,2008,88(3):368-375.DOI:10.1016/j.radonc.2008.03.007. [8] Kardar L,Li Y,Li X,et al. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting[J].Pract Radiat Oncol,2014,4(6):e259-e268.DOI:10.1016/j.prro.2014.06.010. [9] Protik A,van Herk M,Witte M,et al. The impact of breathing amplitude on dose homogeneity in intensity modulated proton therapy[J].Phys Imag Rad Onc,2017,3 11-16.DOI:10.1016/j.phro.2017.07.004. [10] Liu HH,Balter P,Tutt T,et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer[J].Int J Radiat Oncol Biol Phys,2007,68(2):531-540.DOI:10.1016/j.ijrobp.2006.12.066. [11] Li Y,Kardar L,Li X,et al. On the interplay effects with proton scanning beams in stage Ⅲ lung cancer[J].Med Phys,2014,41(2):021721.DOI:10.1118/1.4862076. [12] Gorgisyan J,Perrin R,Lomax AJ,et al. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions[J].Acta Oncol,2017,56(6):853-859.DOI:10.1080/0284186X.2017.1287950. [13] Maleike D,Unkelbach J,Oelfke U.Simulation and visualization of dose uncertainties due to interfractional organ motion[J].Phys Med Biol,2006,51(9):2237-2252.DOI:10.1088/0031-9155/51/9/009. [14] Dowdell S,Grassberger C,Sharp GC,et al. Interplay effects in proton scanning for lung:a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters[J].Phys Med Biol,2013,58(12):4137-4156.DOI:10.1088/0031-9155/58/12/4137. [15] Lambert J,Suchowerska N,McKenzie DR,et al. Intrafractional motion during proton beam scanning[J].Phys Med Biol,2005,50(20):4853-4862.DOI:10.1088/0031-9155/50/20/008. [16] Chang JY,Zhang X,Knopf A,et al. Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee[J].Int J Radiat Oncol Biol Phys,2017,99(1):41-50.DOI:10.1016/j.ijrobp.2017.05.014. [17] Newhauser WD,Zhang R.The physics of proton therapy[J].Phys Med Biol,2015,60(8):R155-R209.DOI:10.1088/0031-9155/60/8/R155. [18] Zhu X,El Fakhri G.Proton therapy verification with PET imaging[J].Theranostics,2013,3(10):731-740.DOI:10.7150/thno.5162. [19] Priegnitz M,Barczyk S,Nenoff L,et al. Towards clinical application:prompt gamma imaging of passively scattered proton fields with a knife-edge slit camera[J].Phys Med Biol,2016,61(22):7881-7905.DOI:10.1088/0031-9155/61/22/7881. [20] Xie Y,Bentefour EH,Janssens G,et al. Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy[J].Int J Radiat Oncol Biol Phys,2017,99(1):210-218.DOI:10.1016/j.ijrobp.2017.04.027. [21] Kang Y,Zhang X,Chang JY,et al.4D Proton treatment planning strategy for mobile lung tumors[J].Int J Radiat Oncol Biol Phys,2007,67(3):906-914.DOI:10.1016/j.ijrobp.2006.10.045. [22] Albertini F,Hug EB,Lomax AJ.Is it necessary to plan with safety margins for actively scanned proton therapy?[J].Phys Med Biol,2011,56(14):4399-4413.DOI:10.1088/0031-9155/56/14/011. [23] Thomas SJ.Margins for treatment planning of proton therapy[J].Phys Med Biol,2006,51(6):1491-1501.DOI:10.1088/0031-9155/51/6/009. [24] Park PC,Zhu XR,Lee AK,et al. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties[J].Int J Radiat Oncol Biol Phys,2012,82(2):e329-e336.DOI:10.1016/j.ijrobp.2011.05.011. [25] Li H,Li Y,Zhang X,et al. Dynamically accumulated dose and 4D accumulated dose for moving tumors[J].Med Phys,2012,39(12):7359-7367.DOI:10.1118/1.4766434. [26] Lujan AE,Larsen EW,Balter JM,et al. A method for incorporating organ motion due to breathing into 3D dose calculations[J].Med Phys,1999,26(5):715-720.DOI:10.1118/1.598577. [27] Unkelbach J,Chan TC,Bortfeld T.Accounting for range uncertainties in the optimization of intensity modulated proton therapy[J].Phys Med Biol,2007,52(10):2755-2773.DOI:10.1088/0031-9155/52/10/009. [28] Unkelbach J,Bortfeld T,Martin BC,et al. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning[J].Med Phys,2009,36(1):149-163.DOI:10.1118/1.3021139. [29] Pflugfelder D,Wilkens JJ,Oelfke U.Worst case optimization:a method to account for uncertainties in the optimization of intensity modulated proton therapy[J].Phys Med Biol,2008,53(6):1689-1700.DOI:10.1088/0031-9155/53/6/013. [30] Liu W,Zhang X,Li Y,et al. Robust optimization of intensity modulated proton therapy[J].Med Phys,2012,39(2):1079-1091.DOI:10.1118/1.3679340. [31] Li Y,Niemela P,Liao L,et al. Selective robust optimization:A new intensity-modulated proton therapy optimization strategy[J].Med Phys,2015,42(8):4840-4847.DOI:10.1118/1.4923171. [32] Liu W,Schild SE,Chang JY,et al. Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer[J].Int J Radiat Oncol Biol Phys,2016,95(1):523-533.DOI:10.1016/j.ijrobp.2015.11.002. [33] Li H,Zhang X,Park P,et al. Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients[J].Radiother Oncol,2015,114(3):367-372.DOI:10.1016/j.radonc.2015.01.017. [34] Inoue T,Widder J,Dijk LV,et al. Limited impact of setup and range uncertainties,breathing motion,and interplay effects in robustly optimized intensity modulated proton therapy for stage Ⅲ non-small cell lung cancer[J].Int J Radiat Oncol Biol Phys,2016,96(3):661-669.DOI:10.1016/j.ijrobp.2016.06.2454. [35] Kraus K,Heath E,Oelfke U.Dosimetric consequences of tumour motion due to respiration for a scanned proton beam[J].Phys Med Biol,2011,56(20):6563-6581.DOI:10.1088/0031-9155/56/20/003. [36] Grassberger C,Dowdell S,Sharp G,et al. Motion mitigation for lung cancer patients treated with active scanning proton therapy[J].Med Phys,2015,42(5):2462-2469.DOI:10.1118/1.4916662. [37] Poulsen PR,Eley J,Langner U,et al. Efficient interplay effect mitigation for proton pencil beam scanning by spot-adapted layered repainting evenly spread out over the full breathing cycle[J].Int J Radiat Oncol Biol Phys,2018,100(1):226-234.DOI:10.1016/j.ijrobp.2017.09.043. [38] Schatti A,Zakova M,Meer D,et al. Experimental verification of motion mitigation of discrete proton spot scanning by re-scanning[J].Phys Med Biol,2013,58(23):8555-8572.DOI:10.1088/0031-9155/58/23/8555. [39] Grassberger C,Dowdell S,Lomax AJ,et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer[J].Int J Radiat Oncol Biol Phys,2013,86(2):380-386.DOI:10.1016/j.ijrobp.2013.01.024. [40] Bert C,Grozinger SO,Rietzel E.Quantification of interplay effects of scanned particle beams and moving targets[J].Phys Med Biol,2008,53(9):2253-2365.DOI:10.1088/0031-9155/53/9/003. [41] Tsunashima Y.Verification of the clinical implementation of the respiratory gated beam delivery technique with synchrotron-based proton irradiation[M].Houston:The University of Texas,2012. [42] Li H,Zhu XR,Zhang X.Reducing dose uncertainty for spot-scanning proton beam therapy of moving tumors by optimizing the spot delivery sequence[J].Int J Radiat Oncol Biol Phys,2015,93(3):547-556.DOI:10.1016/j.ijrobp.2015.06.019. [43] Riboldi M,Orecchia R,Baroni G.Real-time tumour tracking in particle therapy:technological developments and future perspectives[J].Lancet Oncol,2012,13(9):e383-e391.DOI:10.1016/S1470-2045(12)70243-7. [44] Kanehira T,Matsuura T,Takao S,et al. Impact of real-time image gating on spot scanning proton therapy for lung tumors:a simulation study[J].Int J Radiat Oncol Biol Phys,2016,97(1):173-181.DOI:10.1016/j.ijrobp.2016.09.027. [45] Gorgisyan J,Munck RP,Perrin R,et al. Feasibility of pencil beam scanned intensity modulated proton therapy in breath-hold for locally advanced non-small cell lung cancer[J].Int J Radiat Oncol Biol Phys,2017,99(5):1121-1128.DOI:10.1016/j.ijrobp.2017.08.023. [46] Lu HM,Brett R,Sharp G,et al. A respiratory-gated treatment system for proton therapy[J].Med Phys,2007,34(8):3273-3278.DOI:10.1118/1.2756602.