[an error occurred while processing this directive] | [an error occurred while processing this directive]
Monte Carlo dosimetric study of the GZP 60Co brachytherapy source with stainless steel applicator
Wu Junxiang, Wang Xianliang, Kang Shengwei, Li Jie, Lei Qin, Chen Zhao, Wang Pei
Department of Radiation Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China (Wu JX, Wang XL, Kang SW, Li J, Wang P); Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China (Lei Q, Chen Z)
AbstractObjective To evaluate the effect of stainless steel applicator on dose distribution in GZP 60Co brachytherapy source and to obtain the dosimetric parameters of the 60Co source with stainless steel applicator. Methods Geant4 was employed to obtain the mean adsorption dose of the 60Co brachytherapy source in the range of 0-10 cm, and the dosimetric parameters were calculated according to the formula proposed by AAPM reports TG43 and TG43U1. The 60Co source was located in the center of a sphere water phantom with a radius of 30 cm. Results For channel 1 and 2 of GZP 60Co source, the results of Λ with stainless steel applicator were 1.014 cGyh-1U-1(with a difference of 0.5% compared with non-applicator), the results of Λ with stainless steel applicator for channel 3 were 0.998 cGyh-1U-1(with a difference of 0.1% compared with non-applicator). The radial dose function in the range of 0.5-10.0 cm in a longitudinal direction was calculated and the fitting formula for the function was obtained. The polynomial function for the radial dose function and the anisotropy function with a of 0°-175° and an r of 0.5-10.0 cm were obtained. Conclusion The dosimetric parameters of the 60Co source with stainless steel applicator are obtained, which provide more accurate reference data for clinical application. In clinical practice, the effect of stainless steel applicator on dose distribution should be considered.
Corresponding Authors:
Wang Pei, Email:dengwangpei@163.com
Cite this article:
Wu Junxiang,Wang Xianliang,Kang Shengwei et al. Monte Carlo dosimetric study of the GZP 60Co brachytherapy source with stainless steel applicator[J]. Chinese Journal of Radiation Oncology, 2018, 27(6): 601-606.
Wu Junxiang,Wang Xianliang,Kang Shengwei et al. Monte Carlo dosimetric study of the GZP 60Co brachytherapy source with stainless steel applicator[J]. Chinese Journal of Radiation Oncology, 2018, 27(6): 601-606.
[1] Beaulieu L,Tedgren AC,Carrier JK,et al. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism:Current status and recommendations for clinical implementation[J].Med Phys,2012,39(10):6208-6236.DOI:10.1118/1.4747264. [2] Rivard MJ,Venselaar JL,Beaulieu L.The evolution of brachytherapy treatment planning[J].Med Phys,2009,36(6):2136-2153.DOI:10.1118/1.3125136. [3] Parsai E,Zhang Z,Feldmerier JJ.A quantitative three-dimensional dose attenuation analysis around Fletcher-Suit-Delclos due to stainless steel tube for high-dose-rate brachytherapy by Monte Carlo calculations[J].Brachytherapy,2009,8:318-323.DOI:10.1016/j.brachy.2008.11.012. [4] 王先良,康盛伟,黎杰,等.施源器对192Ir源近距离治疗剂量的影响[J].中华放射肿瘤学杂志,2015,9,24(5)585-587.DOI:10.3760/cma.j.issn.1004-4221.2015.05.028. Wang XL, Kang SW, Li J, et al. Impacts of applicators on 192Ir brachytherapy dosimetry[J]. Chin J Radiat Oncol,2015,24(5):585-587.DOI:10.3760/cma.j.issn.1004-4221.2015.05.028. [5] Lymperopoulou G,Pantelis E,Papagiannis P,et al. A Monte Carlo dosimetry study of vaginal 192Ir brachytherapy applications with a shielded cylindrical applicator set[J].Med Phys,2004,31(11):3080-3086.DOI:10.1118/1.1810233. [6] Petrokokkinos L,Zourari K,Pantelis E,et al. Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part Ⅱ:Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator[J].Med Phys,2011,38(4):1981-1992.DOI:10.1118/1.3567507. [7] 王先良,袁珂,唐斌,等.GZP型60Co源剂量学参数的蒙特卡罗模拟[J].中华放射肿瘤学杂志,2016,25(5):489-495.DOI:10.3760/cma.j.issn.1004-4221.2016.05.015. Wang XL, Yuan K, Tang B, et al. A Monte Carlo-based dosimetric study of the GZP 60Co source[J]. Chin J Radiat Oncol,2016,25(5):489-495.DOI:10.3760/cma.j.issn.1004-4221.2016.05.015. [8] Toossi M,Ghorbani M,Mowlavi A,et al. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources:application of superimposition method[J].RadiolOncol,2012,46(2):170-178.DOI:10.2478/v10019-012-0005-3. [9] Nath R,Anderson LL,Luxton G,et al. Dosimetry of interstitial brachytherapy sources:Recommendations of the AAPM Radiation Therapy Committee Task Group No.43[J].Med Phys,1995,22:209-234.DOI:10.1118/1.597458. [10] Rivard MJ,Coursey BM,DeWerd LA,et al. Update of AAPM Task Group No.43 Report:A revised AAPM protocol for brachytherapy dose calculations[J].Med Phys,2004,31:633-674.DOI:10.1118/1.1646040. [11] Torres J,and Buades M J.Dosimetry characterization of 32P intravascular brachytherapy source wires using Monte Carlo codes PENELOPE and GEANT4[J].Med Phys,2004,31:296-304.DOI:10.1118/1.1637970. [12] Ballarini F,Battistoni G,Campanella M et al. The FLUKA code:an overview[J].Journal of Physics:Conference Series,2006,41:151-160.DOI:10.1088/1742-6596/41/1/014. [13] Wang R,Sloboda RS.EGS4 dosimetry calculation for cylindrically symmetric brachytherapy sources[J].Med Phys,1996,23:1459-1465.DOI:10.1118/1.597728. [14] Papagiannis P, Angelopoulos A, Pantelis E, et al. Monte Carlo dosimetry of 60Co HDR brachytherapy sources[J]. Med Phys,2003,30(4):712-721.DOI:10.1118/1.1563662. [15] Asenjo J,Fernandez-Varea JM,Sanchez-Reyes A.Characterization of a high-dose-rate 90Sr-9090Y source for intravascular brachytherapy by using the Monte Carlo code PENELOPE[J].Phys Med Biol,2002,47:697-711.DOI:10.1088/0031-9155/47/5/301. [16] Cullen DE,Hubbell JH,Kissel L et al. EPDL97:the evaluated photon data library. Lvermore:University of california,lawrence livermore national laboratory,1997. [17] Cullen DE,Perkins ST,Seltzer SM et al. Tables and graphs of electron-interaction cross-sections from 10eV to 100GeV derived from the LLNL evaluated electron data library (EEDL).California:Lawrence Livermore National Laboratory,2001. [18] Ballester F,Branero D,Perez-Calatayud J,et al. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source[J].Phys Med Biol,2005,50:309-316.DOI:10.1088/0031-9155/50/21/N03. [19] Perez-Calatayud J,Granero D,Ballester F.Phantom size in brachytherapy source dosimetric studies[J].Med Phys,2004;31:712-721.DOI:10.1118/1.1759826. [20] Vijande J,Granero D,Perez-Calatayud J,et al. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source[J].J Contemporory Brachytherapy,2012,4(1):34-44.DOI:10.5114/jcb.2012.27950. [21] Li ZF,Das RK,DeWerd LA,et al. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 keV[J].Med Phys,2007,34:37-40.DOI:10.1118/1.2388155.