Abstract Currently, image-guided radiation therapy (IGRT) is the most advanced technique in the field of radiation oncology. However, the most commonly used image-guided techniques, such as cone beam computed tomograhpy (CBCT) and electronic portal imaging device (EPID) are limited due to extra radiation, poor image quality and failure of real-time monitoring. Optical surface imaging technique generates no additional radiation and can conduct real-time monitoring. Multiple researches have demonstrated that it has significant advantages in terms of guiding positioning, real-time monitoring of the fractionated and divided motion, reducing the frequency of CBCT scanning, breathing door control, etc. In this paper, this novel technique and its application prospect in radiotherapy are reviewed.
Xiao Qing,Zhong Renming. Application and prospect of optical surface imaging technique in radiotherapy[J]. Chinese Journal of Radiation Oncology, 2018, 27(2): 214-217.
Xiao Qing,Zhong Renming. Application and prospect of optical surface imaging technique in radiotherapy[J]. Chinese Journal of Radiation Oncology, 2018, 27(2): 214-217.
[1] Siegel R,Ma JM,Zou ZH,et al. Cancer statistics,2014[J].CA:A Cancer J Clin,2014,64(1):9-29.DOI:10.3322/caac.21208. [2] Siegel RL,Miller KD,Jemal A.Cancer statistics,2015[J].CA:A Cancer J Clin,2015,65(1):5-29.DOI:10.3322/caac.21254. [3] Siegel RL,Miller KD,Jemal A.Cancer statistics,2016[J].CA:A Cancer J Clin,2016,66(1):7-30.DOI:10.3322/caac.21332. [4] Herman MG.Clinical use of electronic portal imaging[J].Semin Radiat Oncol,2005,15(3):157-167.DOI:10.1016/j.semradonc.2005.01.002. [5] Herman MG,Balter JM,Jaffray DA,et al. Clinical use of electronic portal imaging:report of AAPM Radiation Therapy Committee Task Group 58[J].Med Phys,2001,28(5):712-737.DOI:10.1118/1.1368128. [6] Goyal S,Kataria T.Image guidance in radiation therapy:techniques and applications[J].Radiol Res Pract,2014,2014:705604.DOI:10.1155/2014/705604. [7] Pouliot J,Bani-Hashemi A,Chen J,et al. Low-dose megavoltage cone-beam CT for radiation therapy[J].Int J Radiat Oncol Biol Phys,2005,61(2):552-560.DOI:10.1016/j.ijrobp.2004.10.011. [8] Chang J,Yenice KM,Narayana A,et al. Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup[J].Med Phys,2007,34(6):2077-2084.DOI:10.1118/1.2731031. [9] Masi L,Casamassima F,Polli C,et al. Cone beam CT image guidance for intracranial stereotactic treatments:comparison with a frame guided set-up[J].Int J Radiat Oncol Biol Phys,2008,71(3):926-933.DOI:10.1016/j.ijrobp.2008.03.006. [10] Li FX,Li JB,Ma ZF,et al. Comparison of internal target volumes defined on 3-dimensional,4-dimensonal,and cone-beam CT images of non-small-cell lung cancer[J].Onco Targets Ther,2016,9:6945-6951.DOI:10.2147/OTT.S111198. [11] Li Y,Ma JL,Chen X,et al.4DCT and CBCT based PTV margin in Stereotactic Body Radiotherapy (SBRT) of non-small cell lung tumor adhered to chest wall or diaphragm[J].Radiat Oncol,2016,11:152.DOI:10.1186/s13014-016-0724-5. [12] Rong Y,Walston S,Welliver MX,et al. Improving intra-fractional target position accuracy using a 3D surface surrogate for left breast irradiation using the respiratory-gated deep-inspiration breath-hold technique[J].PLoS One,2014,9(5):e97933.DOI:10.1371/journal.pone.0097933. [13] Wagner TH,Meeks SL,Bova FJ,et al. Optical tracking technology in stereotactic radiation therapy[J].Med Dosim,2007,32(2):111-120.DOI:10.1016/j.meddos.2007.01.008. [14] Adler JR Jr,Chang SD,Murphy MJ,et al. The Cyberknife:a frameless robotic system for radiosurgery[J].Stereotact Funct Neurosurg,1997,69:124-128.DOI:10.1159/000099863. [15] Antypas C,Pantelis E.Performance evaluation of a CyberKnife®G4 image-guided robotic stereotactic radiosurgery system[J].Phys Med Biol,2008,53(17):4697-4718.DOI:10.1088/0031-9155/53/17/016. [16] Jin JY,Yin FF,Tenn SE,et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy[J].Med Dosim,2008,33(2):124-134.DOI:10.1016/j.meddos.2008.02.005. [17] Elsayad K,Lehrich P,Yppaerilae-Wolters H,et al. Primary cardiac angiosarcoma treated with positron emission tomography/magnetic resonance imaging-guided adaptive radiotherapy[J].Can J Cardiol,2016,32(6):829.e7-829.e10.DOI:10.1016/j.cjca.2015.07.010. [18] O′Brien DJ,Roberts DA,Ibbott GS,et al. Reference dosimetry in magnetic fields:formalism and ionization chamber correction factors[J].Med Phys,2016,43(8):4915.DOI:10.1118/1.4959785. [19] Jaffray DA.Kilovoltage volumetric imaging in the treatment room[J].Front Radiat Ther Oncol,2007,40:116-131.DOI:10.1159/000106031. [20] Hess CB,Thompson HM,Benedict SH,et al. Exposure risks among children undergoing radiation therapy:considerations in the era of image guided radiation therapy[J].Int J Radiat Oncol Biol Phys,2016,94(5):978-992.DOI:10.1016/j.ijrobp.2015.12.372. [21] Alderliesten T,Sonke JJ,Betgen A,et al.3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer[J].Radiother Oncoly,2012,105(2):155-160.DOI:10.1016/j.radonc.2012.08.016. [22] Gopan O,Wu QW.Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy[J].Int J Radiat Oncol Biol Phys,2012,84(2):547-552.DOI:10.1016/j.ijrobp.2011.12.004. [23] Stieler F,Wenz F,Shi M,et al. A novel surface imaging system for patient positioning and surveillance during radiotherapy. A phantom study and clinical evaluation[J].Strahlenther Onkol,2013,189(11):938-944.DOI:10.1007/s00066-013-0441-z. [24] Mancosu P,Fogliata A,Stravato A,et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study[J].Med Dosim,2016,41(2):173-179.DOI:10.1016/j.meddos.2015.12.003. [25] Walter F,Freislederer P,Belka C,et al. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM)[J].Radiat Oncol,2016,11:154.DOI:10.1186/s13014-016-0728-1. [26] Stieler F,Wenz F,Scherrer D,et al. Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy[J].Strahlenther Onkol,2012,188(12):1080-1084.DOI:10.1007/s00066-012-0244-7. [27] Schönecker S,Walter F,Freislederer P,et al. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/SentinelTM system for deep inspiration breath-hold (DIBH)[J].Radiat Oncol,2016,11:143.DOI:10.1186/s13014-016-0716-5. [28] Li G,Ballangrud A,Chan M,et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring[J].J Appl Clin Med Phys,2015,16(4):5416.DOI:10.1120/jacmp.v16i4.5416. [29] Wen N,Li HS,Song K,et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery[J].J Appl Clin Med Phys,2015,16(4):125-148.DOI:10.1120/jacmp.v16i4.5313. [30] Alignrt,Visionrt,Inc[DB/OL][2017-02-12].http://www.visionrt.com/. [31] Sentinel,Catalyst,C-RAD,Inc[DB/OL][2017-02-12].http://c-rad.se/. [32] Moore C,Lilley F,Sauret V,et al. Opto-electronic sensing of body surface topology changes during radiotherapy for rectal cancer[J].Int J Radiat Oncol Biol Phys,2003,56(1):248-258.DOI:10.1016/S0360-3016(03)00079-8. [33] Mersmann S,Seitel A,Erz M,et al. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction[J].Med Phys,2013,40(8):082701.DOI:10.1118/1.4812889. [34] Brahme A,Nyman P,Skatt B.4D laser camera for accurate patient positioning,collision avoidance,image fusion and adaptive approaches during diagnostic and therapeutic procedures[J].Med Phys,2008,35(5):1670-1681.DOI:10.1118/1.2889720. [35] Lindl BL,Müller RG,Lang S,et al. TOPOS:a new topometric patient positioning and tracking system for radiation therapy based on structured white light[J].Med Phys,2013,40(4):042701.DOI:10.1118/1.4794927. [36] Wikström K,Nilsson K,Isacsson U,et al. A comparison of patient position displacements from body surface laser scanning and cone beam CT bone registrations for radiotherapy of pelvic targets[J].Acta Oncol,2014,53(2):268-277.DOI:0.3109/0284186X.2013.802836. [37] Peng JL,Kahler D,Li JG,et al. Characterization of a real-time surface image-guided stereotactic positioning system[J].Med Phys,2010,37(10):5421-5433.DOI:10.1118/1.3483783. [38] Kim Y,Li RJ,Na YH,et al. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy:a simulation study using patient data[J].Med Phys,2014,41(12):121701.DOI:10.1118/1.4898103. [39] Pallotta S,Vanzi E,Simontacchi G,et al. Surface imaging,portal imaging,and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis[J].Strahlenther Onkol,2015,191(9):726-733.DOI:10.1007/s00066-015-0861-z. [40] Apicella G,Loi G,Torrente S,et al. Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors[J].Radiol Med,2016,121(10):805-810.DOI:10.1007/s11547-016-0659-9. [41] Wiersma RD,Tomarken SL,Grelewicz Z,et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking[J].Med Phys,2013,40(11):111712.DOI:10.1118/1.4823757. [42] Li G,Wei J,Huang H,et al. Characterization of optical-surface-imaging-based spirometry for respiratory surrogating in radiotherapy[J].Med Phys,2016,43(3):1348-1360.DOI:10.1118/1.4941951. [43] Freislederer P,Reiner M,Hoischen W,et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac[J].Radiat Oncol,2015,10:68.DOI:10.1186/s13014-015-0376-x.