[1] Bedard PL,Hansen AR,Ratain MJ,et al. Tumour heterogeneity in the clinic[J].Nature,2013,501(7467):355-364.DOI:10.1038/nature12627.
[2] Meacham CE,Morrison SJ.Tumour heterogeneity and cancer cell plasticity[J].Nature,2013,501(7467):328-337.DOI:10.1038/nature12624.
[3] Robinson S P,Mcintyre D J,Checkley D,et al. Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging[J].Br J Cancer,2003,88(10):1592-1597.DOI:10.1038/sj.bjc.6600926.
[4] Just N.Improving tumour heterogeneity MRI assessment with histograms[J].Br J Cancer,2014,111(12):2205-2213.DOI:10.1038/bjc.2014.512.
[5] De Sousa Melo F,Vermeulen L,Fessler E,et al. Cancer heterogeneity:a multifaceted view[J].EMBO Reports,2013,14(8):686-695.DOI:10.1038/embor.2013.92.
[6] Davnall F,Yip CSP,Ljungqvist G,et al. Assessment of tumor heterogeneity:an emerging imaging tool for clinical practice?[J].Insight Imag,2012,3(6):573-589.DOI:10.1007/s13244-012-0196-6.
[7] O'Connor JPB,Rose CJ,Waterton JC,et al. Imaging Intratumor Heterogeneity:Role in Therapy Response,Resistance,and Clinical Outcome[J].Clin Cancer Res,2015,21(2):249-257.DOI:10.1158/1078-0432.
[8] Bull J G,Saunders D E,Clark C A.Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms[J].Eur Radiol,2012,22(2):447-457.DOI:10.1007/s00330-011-2255-7.
[9] Song YS,Choi SH,Park CK,et al. True progression versus pseudoprogression in the treatment of glioblastomas:a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis[J].Kor J Radiol,2013,14(4):662-672.DOI:10.3348/kjr.2013.14.4.662.
[10] Kim H,Choi SH,Kim JH,et al. Gliomas:application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading[J].PLoS One,2013,8(5):e63462.DOI:10.1371/journal.pone.0063462.
[11] Chandarana H,Rosenkrantz AB,Mussi TC,et al. Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer[J].Radiology,2012,265(3):790-798.DOI:10.1148/radiol.12111281.
[12] Downey K,Riches SF,Morgan VA,et al. Relationship between imaging biomarkers of stage Ⅰ cervical cancer and poor-prognosis histologic features:quantitative histogram analysis of diffusion-weighted MR images[J].AJR Am J Roentgenol,2013,200(2):314-320.DOI:10.2214/AJR.12.9545.
[13] Woo S,Cho JY,Kim SY,et al. Histogram analysis of apparent diffusion coefficient map of diffusion-weighted MRI in endometrial cancer:a preliminary correlation study with histological grade[J].Acta Radiol,2014,55(10):1270-1277.DOI:10.1177/0284185113514967.
[14] Baek H J,Kim H S,Kim N,et al. Percent change of perfusion skewness and kurtosis:a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas[J].Radiology,2012,264(3):834-843.DOI:10.1148/radiol.12112120.
[15] King AD,Chow KK,Yu KH,et al. Head and neck squamous cell carcinoma:diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response[J].Radiology,2013,266(2):531-538.DOI:10.1148/radiol.12120167.
[16] Johansen R,Jensen LR,Rydland J,et al. Predicting survival and early clinical response to primary chemotherapy for patients with locally advanced breast cancer using DCE-MRI[J].J Magnet Reson Imag,2009,29(6):1300-1307.DOI:10.1002/jmri.21778.
[17] Chang YC,Huang CS,Liu YJ,et al. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI[J].Phys Med Biol,2004,49(16):3593-3602.DOI:10.1088/0031-9155/49/16/007.
[18] Kyriazi S,Collins DJ,Messiou C,et al. Metastatic ovarian and primary peritoneal cancer:assessing chemotherapy response with diffusion-weighted MR imaging—value of histogram analysis of apparent diffusion coefficients[J].Radiology,2011,261(1):182-192.DOI:10.1148/radiol.11110577.
[19] Yuh WTC,Mayr NA,Jarjoura D,et al. Predicting Control of Primary Tumor and Survival by DCE MRI During Early Therapy in Cervical Cancer[J].Investigative Radiology,2009,44(6):343-350.DOI:10.1097/RLI.0b013e3181a64ce9.
[20] Castellano G,Bonilha L,Li LM,et al. Texture analysis of medical images[J].Clin Radiol,2004,59(12):1061-1069.DOI:10.1016/j.crad.2004.07.008.
[21] Nielsen B,Albregtsen F,Danielsen HE.Statistical nuclear texture analysis in cancer research:a review of methods and applications[J].Crit Revi Oncogen,2008,14(2-3):89-164.DOI:10.1615/CritRevOncog.v14.i2-3.10.
[22] Haralick RM.Statistical and structural approaches to texture[J].Proceedings of the IEEE,1979,67(5):786-804.DOI:10.1109/PROC.1979.11328.
[23] Michallek F,Dewey M.Fractal analysis in radiological and nuclear medicine perfusion imaging:a systematic review[J].Eur Radiol,2014,24(1):60-69.DOI:10.1007/s00330-013-2977-9.
[24] Molina D,Pérez-Beteta J,Luque B,et al. Tumour heterogeneity in glioblastoma assessed by MRI texture analysis:a potential marker of survival[J].Br J Radiol,2016,4:20160242.DOI:10.1259/bjr.20160242.
[25] Eliat P,Olivié D,Skali S,et al. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other Glioblastoma?[J].Neurol Res Int,2012,2012:195176.DOI:10.1155/2012/195176.
[26] Holli K,Lääperi A L,Harrison L,et al. Characterization of breast cancer types by texture analysis of magnetic resonance images[J].Academ Radiol,2010,17(2):135-141.DOI:10.1016/j.acra.2009.08.012.
[27] Schieda N,Thornhill R E,Al-Subhi M,et al. Diagnosis of sarcomatoid renal cell carcinoma With CT:evaluation by qualitative imaging features and texture analysis[J].AJR Am J Roentgenol,2015,204(5):1013-1023.DOI:10.2214/AJR.14.13279.
[28] Kido S,Kuriyama K,Higashiyama M,et al. Fractal analysis of small peripheral pulmonary nodules in thin-section CT:evaluation of the lung-nodule interfaces[J].J Comput Assist Tomogr,2002,26(4):573-578.DOI:10.1097/00004728-200207000-00017.
[29] Lopes R,Ayache A,Makni N,et al. Prostate cancer characterization on MR images using fractal features[J].Med Phys,2011,38(1):83-95.DOI:10.1118/1.3521470.
[30] Goh V,Ganeshan B,Nathan P,et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer:CT texture as a predictive biomarker[J].Radiology,2011,261(1):165-171.DOI:10.1148/radiol.11110264.
[31] Ng F,Ganeshan B,Kozarski R,et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis:contrast-enhanced CT texture as a biomarker of 5-year survival[J].Radiology,2013,266(1):177-184.DOI:10.1148/radiol.12120254.
[32] Balagurunathan Y,Gu YH,Wang H,et al. Reproducibility and prognosis of quantitative features extracted from CT images[J].Transl Oncol,2014,7(1):72-87.DOI:10.1593/tlo.13844.
[33] Lee J,Jain R,Khalil K,et al. Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in Glioblastoma[J].Am J Neuroradiol,2016,37(1):37-43.DOI:10.3174/ajnr. A4534.
[34] Kim JH,Ko ES,Lim Y,et al. Breast cancer heterogeneity:MR imaging texture analysis and survival outcomes[J].Radiology,2016,282(3):160261.DOI:10.1148/radiol.2016160261.
[35] O'Connor JP,Rose CJ,Jackson A,et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6[J].Br J Cancer,2011,105(1):139-145.DOI:10.1038/bjc.2011.191.
[36] Alic L,Van Vliet M,Van Dijke CF,et al. Heterogeneity in DCE-MRI parametric maps:a biomarker for treatment response?[J].Phys Med Biol,2011,56(6):1601-1616.DOI:10.1088/0031-9155/56/6/006.
[37] Moffat BA,Chenevert TL,Lawrence TS,et al. Functional diffusion map:a noninvasive MRI biomarker for early stratification of clinical brain tumor response[J].Proc Natl Acad Sci U S A,2005,102(15):5524-5529.DOI:10.1073/pnas.0501532102.
[38] Galbán CJ,Chenevert TL,Meyer CR,et al. Prospective analysis of parametric response map-derived MRI biomarkers:identification of early and distinct Glioma response patterns not predicted by standard radiographic assessment[J].Clin Cancer Res,2011,17(14):4751-4760.DOI:10.1158/1078-0432.
[39] Galbán CJ,Chenevert TL,Meyer CR,et al. The parametric response map is an imaging biomarker for early cancer treatment outcome[J].Nat Med,2009,15(5):572-576.DOI:10.1038/nm.1919.
[40] Hamstra DA,Chenevert TL,Moffat BA,et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma[J].Proc Natl Acad Sci USA,2005,102(46):16759-16764.DOI:10.1073/pnas.0508347102.
[41] Ellingson BM,Malkin MG,Rand SD,et al. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity[J].J Magn Reson Imag,2010,31(3):538-548.DOI:10.1002/jmri.22068.
[42] Cho N,Im SA,Park IA,et al. Breast cancer:early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging[J].Radiology,2014,272(2):385-396.DOI:10.1148/radiol.14131332.
[43] Lee KC,Bradley DA,Hussain M,et al. A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone[J].Neoplasia,2007,9(12):1003-1011.DOI:10.1593/neo.07954.
[44] Galbán CJ,Mukherji SK,Chenevert TL,et al. A feasibility study of parametric response map analysis of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy[J].Transl Oncol,2009,2(3):184-190.DOI:10.1593/tlo.09175.
[45] Ceschin R,Kurland BF,Abberbock SR,et al. Parametric response mapping of apparent diffusion coefficient as an imaging biomarker to distinguish pseudoprogression from true tumor progression in peptide-based vaccine therapy for pediatric diffuse intrinsic pontine Glioma[J].Am J Neuroradiol,2015,36(11):2170-2176.DOI:10.3174/ajnr. A4428.
[46] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.DOI:10.1016/j.ejca.2011.11.036.
[47] Kumar V,Gu YH,Basu S,et al. Radiomics:the process and the challenges[J].Magn Reson Imag,2012,30(9):1234-1248.DOI:10.1016/j.mri.2012.06.010.
[48] Aerts HJWL,Velazquez ER,Leijenaar RTH,et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nat Commun,2014,5:4006.DOI:10.1038/ncomms5006.
[49] Huang YQ,Liang CH,He L,et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J].J Clin Oncol,2016,34(18):2157-2164.DOI:10.1200/JCO.2015.65.9128.
[50] Zhou Y,He L,Huang YQ,et al. CT-based radiomics signature:a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma[J].Abdom Radiol (NY),2017,42(6):1695-1704.DOI:10.1007/s00261-017-1072-0.
[51] Huang YQ,Liu ZY,He L,et al. Radiomics signature:a potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J].Radiology,2016,281(3):947-957.DOI:10.1148/radiol.2016152234. |